

Mark Scheme (Results)

Summer 2019

Pearson Edexcel Advanced Extension Award In Mathematics (9811) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019 Publications Code 9801_01_1906_MS All the material in this publication is copyright © Pearson Education Ltd 2019

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Quest	tion	Scheme	Marks	Notes
1.	(a)	$u = \log_4 r \Longrightarrow 4^u = r$ and taking logs to base 2 Accept $u = \log_4 r = \frac{\log_2 r}{\log_2 4} = \dots$	M1	Accept use of the "Change of base" formula, but not $\log_4 r = \log_2 r^{\frac{1}{2}}$ without further working
		$\Rightarrow u \log_2 4 = \log_2 r \Rightarrow u = \log_4 r = \frac{\log_2 r}{\log_2 4} = \frac{\log_2 r}{2}$	A1	Correct work leading to given answer
			(2)	
	(b)	$\log_{4}(5x^{2} - 11) = \frac{1}{2}\log_{2}(5x^{2} - 11) \text{ or}$ $\log_{2}(3x - 5) = 2\log_{4}(3x - 5)$	M1	For getting both terms to the same base
		$\frac{1}{2}\log_2(5x^2 - 11) = \log_2(3x - 5)$ $\Rightarrow 5x^2 - 11 = (3x - 5)^2$	M1	Removing the logs (FT but must involve a power)
		$4x^2 - 30x + 36 = 0$ or $2x^2 - 15x + 18 = 0 \implies x =$	M1	Forms and solves a three term quadratic (need not be the correct one)
		$x = \frac{3}{2}$ or 6	A1	Both answers (or $x = 6$, with $x = \frac{3}{2}$ seen in a factorisation.)
		Noting that $3x - 5 < 0$ when $x = \frac{3}{2}$ (so log. term is undefined) and hence $x = 6$	B1	Single final answer with reason
			(5)	
				Total 7 marks

Question	Scheme	Marks	Notes
2. (a)	$P(X = m) = {n \choose m} p^m (1 - p)^{n - m}$ Accept ⁿ C _m or factorial form etc for the binomial	B1	Correct expression
	coefficient.	(1)	
(b)	Want $P(X = m - 1) \le P(X = m)$ or $P(X = m + 1) \le P(X = m)$	M1	Allow ≤ for < at endpoints throughout (may be implied by final answer)
	i.e. $\binom{n}{m-1} p^{m-1} (1-p)^{n-m+1} \le \binom{n}{m} p^m (1-p)^{n-m}$ or $\binom{n}{m+1} p^{m+1} (1-p)^{n-m-1} \le \binom{n}{m} p^m (1-p)^{n-m}$	M1	Attempted with at least one correct inequality Allow with = used for this and the next two Ms.
	$i.e. \frac{(n !) p^{m-1} (1-p)^{n-m+1}}{(m-1) ! (n-m+1) !} \leq \frac{(n !) p^m (1-p)^{n-m}}{m ! (n-m) !}$ or $\frac{(n !) p^{m+1} (1-p)^{n-m-1}}{(m+1) ! (n-m-1) !} \leq \frac{(n !) p^m (1-p)^{n-m}}{m ! (n-m) !}$	M1	Use of factorial form for the binomial coefficients in at least two probability expressions.
	i.e. $\frac{1-p}{n-m+1} \le \frac{p}{m}$ or $\frac{p}{m+1} \le \frac{1-p}{n-m}$	M1	Appropriate cancelling of terms attempted
	leading to $(n + 1)p - 1 \le m \le (n + 1)p$	A1	Correct inequality
(c)	e.g. Taking $p = 0.1$, we require both ends of the above interval to be attained that is, $\frac{1}{10}(n+1)$ to be an integer	(5) M1	Sensible choice for p and a strategy to calculate a suitable n ie sets the end points of their interval of length 1 to be integers.
	Try $n = 109$ (e.g.), giving modes 10 and 11	A1	Valid answers given
		(2)	
			Total 8 marks

Question	Scheme	Marks	Notes
3. (a)	(i) $\phi^2 = \frac{1}{4} \left(5 + 2\sqrt{5} + 1 \right)$	M1	Good attempt at squaring
	$= \frac{1}{4} \left(6 + 2\sqrt{5} \right) = \frac{1}{2} \left(3 + \sqrt{5} \right) = \frac{1}{2} \left(1 + \sqrt{5} \right) + 1 = \phi + 1$	A1	All legitimately shown
	(ii) $\frac{1}{\phi} = \frac{2}{\sqrt{5}+1} \times \left(\frac{\sqrt{5}-1}{\sqrt{5}-1}\right)$	M1	Relevant surd-work attempted
	$= \frac{1}{2} \left(\sqrt{5} - 1 \right) = \frac{1}{2} \left(\sqrt{5} + 1 \right) - 1 = \phi - 1$	A1	All legitimately shown
	Alt. Divide $\phi^2 = \phi + 1$ by ϕ (M1) and rearrange \Rightarrow result (A1)	(S+)	
		(4)	
(b)	$\frac{dy_1}{dx} = \frac{1}{x} - 1$ and $\frac{dy_2}{dx} = -\frac{1}{x^2}$	M1	Both gradts. attempted
	$\Rightarrow x^2 = x + 1$	M1 A1	Gradients equated and correct eqn. deduced
	(Since $x > 0$,) $x = \phi$, $y = \frac{1}{\phi}$ or $\phi - 1$	A1 A1 (S+)	<i>x</i> coordinate, <i>y</i> coordinate Allow SC A1A0 here if both correct but not in terms of ϕ
	and $k = \frac{1}{\phi} + \phi - \ln(\phi) = (\sqrt{5} - \ln \phi)$ or $2\phi - 1 - \ln \phi$	A1	Accept any sensible equivalent in terms of ϕ .
		(6)	
S1	S1 mark: Award S1 for a clear solution that is EITHER		
	- fully correct and concise OR		(1)
	- that scores 9+ and includes an S+ but may be s	lightly lab	oured
	ne need for calculation. quadratic equation		
	$x^2 = x + 1$; the second root is $-\frac{1}{\phi} < 0$.		
			Total 10 + 1 marks

Question	Scheme	Marks	Notes
4. (a)	LHS $\equiv S_x C_x C_y + S_x^2 S_y + C_x C_y^2 + S_x S_y C_y$	M1	Applies $\cos(x - y)$ formula and expands the brackets.
	$\equiv S_x C_x C_y + (1 - C_x^2) S_y + C_x (1 - S_y^2) + S_x S_y C_y$	M1	Replaces $\cos^2 x$ by $1 - \sin^2 x$ and $\sin^2 x$ by $1 - \cos^2 x$ respectively
	$\equiv S_y + C_x + C_x(S_xC_y - C_xS_y) + S_y(S_xC_y - C_xS_y)$	M1	Expands, rearranges and factorises appropriately
	$\equiv S_y + C_x + (S_y + C_x) (S_x C_y - C_x S_y)$	M1	Factors out the $(S_y + C_x)$
	$\equiv (S_y + C_x) (1 + \sin(x - y)) \equiv \text{RHS}$	A1	Applies $sin(x - y)$ formula and completes to RHS (no conclusion needed this way)
		(5)	(S+ for a direct approach)
	Alt 1 cos(x - y) = cos x cos y + sin x sin y and sin(x - y) = sin x cos y - cos x sin y	M1	Use of both expansions (NB may be awarded for use of one and complete expansion of one side as per main)
	$S_{x}C_{x}C_{y} + S_{x}^{2}S_{y} + C_{x}C_{y}^{2} + S_{x}S_{y}C_{y}$ $\equiv C_{x} + S_{y} + S_{x}C_{x}C_{y} - C_{x}^{2}S_{y} + S_{x}S_{y}C_{y} - C_{x}S_{y}^{2}$	M1	Full expansion both sides (may be seen separately)
	$\Leftrightarrow S_{x}^{2}S_{y} + C_{x}C_{y}^{2} \equiv C_{x} + S_{y} - C_{x}^{2}S_{y} - C_{x}S_{y}^{2}$	M1	Cancelling terms
	$\Leftrightarrow S_{x}^{2}S_{y} + C_{x}C_{y}^{2} \equiv C_{x}(1 - S_{y}^{2}) + S_{y}(1 - C_{x}^{2})$	M1	Use of relevant trig. identities;
	$\equiv C_x C_y^2 + S_x^2 S_y$ Hence the result is true	A1 (S+)	all correct, with concluding statement.
		(5)	
	Alt 2 $\sin x \cos(x - y) + \cos y \cos(x - y) \equiv \cos x + \sin y + \cos x \sin(x - y) + \sin y \sin(x - y)$	M1	Multiplying out both sides. May be done as separate statements
	$\Leftrightarrow [\sin x \cos(x - y) - \cos x \sin(x - y)] \\ + [\cos y \cos(x - y) - \sin y \sin(x - y)] \equiv \\ \cos x + \sin y$	M1 M1	(Equates sides and) attempts to rearrange to useful form Collecting into useable groupings
	Then $L \equiv sin(x-(x-y)) + cos(y+(x-y))$	M1	Use of $sin(A - B)$ and $cos(A + B)$ formulae
	$\equiv \sin(y) + \cos(x) \equiv R$ Hence the identity is true	A1 (S+)	All correctly shown and conclusion
		(5)	
(b)	Re-arranging and setting $x = 5\theta$, $y = 3\theta$ $\Rightarrow \frac{\sin 5\theta + \cos 3\theta}{\cos 5\theta + \sin 3\theta} = \frac{1 + \sin 2\theta}{\cos 2\theta}$	M1	Use of (a)'s result
	$=\frac{1+2sc}{c^2-s^2}$	M1 A1	Use of double-angle formulae
	$= \frac{(c+s)^2}{(c-s)(c+s)} = \frac{c+s}{c-s} *$	M1	Factorisation & cancelling
	$\frac{c}{c} + \frac{s}{c}$ $1 + t$	M1	Converting to tans
	$=\frac{\frac{c}{c}+\frac{s}{c}}{\frac{c}{c}-\frac{s}{c}}=\frac{1+t}{1-t} **$	A1 (0)	Given Answer all correctly obtained
		(6)	

(c)	$k = \frac{1+t}{1-t} \implies k-kt = 1+t \implies k-1 = t(k+1)$	M1	Rearrangin	ng to tan $\theta = \dots$
	$\Rightarrow \tan \theta = \frac{k-1}{k+1} \text{ or } \theta = \arctan \frac{k-1}{k+1}$	A1		
	Explain 1-1-ness of mapping $k \rightarrow \theta$	B1		ph of $y = \frac{x-1}{x+1}$ or t > 0 always
	$0 < k - 1 < k + 1 \text{ so } 0 < \frac{k - 1}{k + 1} < 1$ $\Rightarrow 0 < \tan \theta < 1 \Rightarrow 0 < \theta < \frac{1}{4}\pi$	B1	For convincing reasoning that each k gives a θ in the required interval	
		(4)		
S2	S1 : Award S1 for a clear solution that EITHER Scores 9+ in (a) and (b) with one part fully correct concise OR that scores 12+ in total and includes an S+ point bul laboured in places. S2 : Award S2 for a clear and concise solution throughout at least 12 marks and includes an S+ point. S+ opportunities: for a direct proof or correct use of \Leftrightarrow not for noting that we require $c + s \neq 0$ (i.e. to and/or that $t = \tan \theta \neq 1$ (i.e. $k \neq 1$) at for completely clear handling of the trig. for any innovative ways used throughout	that scores that scores otation thro an $\theta \neq -1$ of the state of the scores that scores t	bugh proof or $k \neq 0$) at throughout on.	*

Question	Scheme	Marks	Notes
4. (b)	Alt. I Re-arranging and setting $x = 5\theta$, $y = 3\theta$ $\Rightarrow \frac{\sin 5\theta + \cos 3\theta}{\cos 5\theta + \sin 3\theta} = \sec 2\theta + \tan 2\theta$	M1	Use of (a)'s result
	$\frac{1+t^2}{2\theta} = 2t$	M1	Trig. work for 2θ or other appropriate method e.g. half angle formulae to achieve an expression in tan
	$=\frac{1+t^2}{1-t^2}+\frac{2t}{1-t^2}$	A1	Correct expression in tan
	$=\frac{(1+t)^2}{(1+t)(1-t)}$	M1	Common denominator used
	$=\frac{1+t}{1-t}$	M1	Use of difference-of-two- squares factorisation
	$1-\iota$	A1 (6)	Given Answer all correct

Alt. II		
$\frac{\sin(4\theta+\theta)+\cos(4\theta-\theta)}{\sin(4\theta+\theta)+\cos(4\theta-\theta)}$	2.61	Correct use of θ and 4θ
$\cos(4\theta + \theta) + \sin(4\theta - \theta)$	M1	Confect use of 0 and 40
$s_4c + c_4s + c_4c + s_4s$	M1	Use of $\sin/\cos(A \pm B)$
$=\frac{s_4c + c_4s + c_4c + s_4s}{c_4c - s_4s + s_4c - c_4s}$	A1	formulae
$(s_4 + c_4)(c + s)$	M1	Factorising both numerator
$=\frac{(s_4 + c_4)(c + s)}{(c_4 + s_4)(c - s)}$	1011	& denominator.
C = S		
c+s $c+c$ $1+t$	M1	Converting to tans
$= \frac{c+s}{c-s} = \frac{\frac{c}{c} + \frac{s}{c}}{\frac{c}{c} - \frac{s}{c}} = \frac{1+t}{1-t}$	M1	converting to tans
	A1	Given Answer all correct
	(6)	
May work from right to left		
$\frac{1+\tan\theta}{1+\cos\theta} = \frac{\cos\theta + \sin\theta}{1+\cos\theta}$	M1	Multiplies through num.
$1 - \tan \theta = \cos \theta - \sin \theta$		and denom. by $\cos \theta$
$\equiv \frac{(\cos\theta + \sin\theta)^2}{(\cos\theta - \sin\theta)(\cos\theta + \sin\theta)}$	M1	Multiplies through by
$(\cos\theta - \sin\theta)(\cos\theta + \sin\theta)$	IVI I	$(\cos\theta + \sin\theta)$ and
$\equiv \frac{1 + 2\sin\theta\cos\theta}{\cos^2\theta - \sin^2\theta}$		expands
$=\frac{1}{\cos^2\theta-\sin^2\theta}$	A1	to this expression
$\equiv \frac{1 + \sin 2\theta}{2}$	M1	Applies the double angle
$=\frac{1}{\cos 2\theta}$	IVI I	formulae
$1+\sin(5\theta-3\theta)$ $\sin 5\theta+\cos 3\theta$		
$= \frac{1 + \sin(5\theta - 3\theta)}{\cos(5\theta - 3\theta)} = \frac{\sin 5\theta + \cos 3\theta}{\cos 5\theta + \sin 3\theta}$	M1A1	Writes 2θ as $5\theta - 3\theta$
		and completes to the LHS
	(6)	
NB If working from both sides to a common expression,		
then a conclusion must be made for the final A mark.		

Ques	stion	Scheme	Marks	Notes
5.	(a)	A A C C C C C C C C C C		(S+ for good diagram sketched)
		Let <i>P</i> and <i>Q</i> be points such that $\overrightarrow{OP} = b\mathbf{a}$ and $\overrightarrow{OQ} = a\mathbf{b}$.	M1	Extends <i>OA</i> and <i>OB</i> (may use unit vectors instead)
		Then $ \overrightarrow{OP} = b \mathbf{a} = ba = ab = a \mathbf{b} = \overrightarrow{OQ} $ hence <i>OPQ</i> is isosceles. Hence the angle bisector from <i>O</i> is perpendicular to <i>PQ</i> .	A1 M1	Deduce isosceles or equivalent. Use isosceles to
		But $\overrightarrow{QP} = \overrightarrow{OP} - \overrightarrow{OQ} = b\mathbf{a} - a\mathbf{b}$ and hence as <i>C</i> is on the angle bisector, so $b\mathbf{a} - a\mathbf{b}$ is perpendicular to c .	A1 (4)	deduce perpendicular Draw correct conclusion.
	(b)	$\overrightarrow{OD} = \overrightarrow{OA} + \lambda \overrightarrow{AB} \Rightarrow \mathbf{d} = \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a})$ $\Rightarrow \mathbf{d} = (1 - \lambda)\mathbf{a} + \lambda \mathbf{b}$ $(0 < \lambda < 1 \text{ since } D \text{ is between } A \text{ and } B)$	M1 A1 (S+)	Sets up appropriate equation, either form. Correctly shown (Reasoning for λ)
			(2)	
	(c)	$(\overrightarrow{OD} = k\mathbf{c} \text{ and from (a) } \mathbf{c} = K \times \frac{1}{2} (\overrightarrow{OP} + \overrightarrow{OQ}) \text{ hence})$ $\overrightarrow{OD} = k' (\overrightarrow{OP} + \overrightarrow{OQ})$	M1	Makes deduction that d is a multiple of p + q
		Hence $\mathbf{d} = k' \left(\overrightarrow{OP} + \overrightarrow{OQ} \right) = (1 - \lambda) \mathbf{a} + \lambda \mathbf{b}$	M1	Equates their d to d from (b)
		So $k'(b\mathbf{a}+a\mathbf{b}) = (1-\lambda)\mathbf{a}+\lambda\mathbf{b}$	M1	Forms equation in a and b
		Therefore (since a and b are not parallel) $k'b = 1 - \lambda$ and $k'a = \lambda$ $\Rightarrow \frac{\lambda}{a}b = 1 - \lambda \Rightarrow \lambda = \frac{a}{a+b}$	M1 A1	Extracts simultaneous equations and solves for λ . (S+ for non-parallel reasoning)

Question	Scheme	Marks	Notes
	$\overrightarrow{AD} = (1 - \lambda)\mathbf{a} + \lambda\mathbf{b} - \mathbf{a} = \lambda(\mathbf{b} - \mathbf{a}) \Longrightarrow AD = \lambda \mathbf{b} - \mathbf{a} $ $\overrightarrow{BD} = (1 - \lambda)\mathbf{a} + \lambda\mathbf{b} - \mathbf{b} = (1 - \lambda)(\mathbf{a} - \mathbf{b}) \Longrightarrow BD = (1 - \lambda) \mathbf{b} - \mathbf{a} $		Correct work to establish ratio (may just be quoted) Give M0 if division
	So $\frac{AD}{BD} = \frac{\lambda}{1-\lambda}$	M1	of vectors is used.
	$=\frac{a/a+b}{b/a+b}=\frac{a}{b}=\frac{OA}{OB}$	dM1	Substitutes in for λ
	b/a+b b OB	A1	Given result established
		(8)	
<u>S2</u>	S2 mark: Award S2 for a clear and concise solution that is EITHER - fully correct with no majorly incorrect vector notation used OR	(2)	
	 that scores 12+ and includes at least 2 S+ points but may have some poor notation and be slightly laboured Award S1 for 		
	 a clear solution that scores 10+ marks with at least one S+ point. 		
	Notes (a) S+ for a clearly labelled diagram drawn showing at least a , b a (b) for the explanation of why $0 < \lambda < 1$ (c) S+ for reason given for being able to equate coefficients, e.g. v <i>OAB</i> is a triangle. S+ for any innovative ways used throughout the question.		not be parallel since
		Total 14	+ 2 marks

Question	Scheme	Marks	Notes
5. (a) Alt with dot product	$cos \theta = \frac{\mathbf{a} \cdot \mathbf{c}}{ac} = \frac{\mathbf{b} \cdot \mathbf{c}}{bc} \Rightarrow b\mathbf{a} \cdot \mathbf{c} = a\mathbf{b} \cdot \mathbf{c}$ $\Rightarrow (b\mathbf{a} - a\mathbf{b}) \cdot \mathbf{c} = 0$ and the scalar product = 0 \Rightarrow perpendicularity *	(S+) M1 A1 M1 A1 (4)	(Appropriate diagram) Use of the scalar product for both a and b with c Factorising
(b)	As main scheme	M1A1 (S+) (2)	As main scheme (with S+)

(c)	$(b\mathbf{a} - a\mathbf{b}) \cdot \mathbf{d} = 0$	M1	Use (a)'s result with $\mathbf{c} = \mathbf{d}$			
	$b\mathbf{a} \cdot ((1-\lambda)\mathbf{a} + \lambda \mathbf{b}) - a\mathbf{b} \cdot ((1-\lambda)\mathbf{a} + \lambda \mathbf{b}) = 0$	M1	Substg. for d from (b)			
	$b(1-\lambda)a^2 + b\lambda \mathbf{a} \cdot \mathbf{b} - a(1-\lambda)\mathbf{a} \cdot \mathbf{b} - ab^2\lambda = 0$	M1	Multiplying out and using $\mathbf{a} \bullet \mathbf{a} = a^2$ etc.			
	$(a\mathbf{a} \cdot \mathbf{b} - a^2b + b\mathbf{a} \cdot \mathbf{b} - ab^2)\lambda = a\mathbf{a} \cdot \mathbf{b} - a^2b$	M1 (S+) A1	Collecting up λ 's and factorising Correct λ			
	$(a+b)(\mathbf{a} \cdot \mathbf{b} - ab)\lambda = a(\mathbf{a} \cdot \mathbf{b} - ab) **$	M1				
	$\Rightarrow \lambda = \frac{a}{a+b}$	dM1	As main scheme			
		A1 (8)	Given result established			
	$\frac{AD}{BD} = \frac{\lambda}{1-\lambda} = \frac{a/a+b}{b/a+b} = \frac{a}{b} = \frac{OA}{OB}$					
	NB candidates may use $\mathbf{a} \cdot \mathbf{b} = ab\cos\theta$ when rearranging :	4 th M1				
	$(a.ab\cos\theta - a^2b + b.ab\cos\theta - ab^2)\lambda = a.ab\cos\theta - a^2b$					
	$(a+b)ab(\cos\theta-1)\lambda = a.ab(\cos\theta-1)$	A1				
	$\Rightarrow \lambda = \frac{a}{a+b}$	(S+)				
	Explaining that $\cos\theta \neq 1$ since this would mean $\theta = 0^{\circ} **$					
	S + opportunities: At * for noting that $(\mathbf{c} \neq 0) \ b\mathbf{a} - a\mathbf{b} \neq 0$ sin	nce otherwi	ise (e.g.) $\mathbf{a} = \frac{a}{b}\mathbf{b}$			
	and \mathbf{a} and \mathbf{b} would be parallel					
	At ** for explaining that $\mathbf{a} \cdot \mathbf{b} - ab \neq 0$ since $\mathbf{a} \cdot \mathbf{b} = ab \cos \theta$ and this would mean $\theta = 0^{\circ}$ (or 180°)					
	for any innovative ways used throughout the	e question.				

Question	Scheme	Mark s	Notes
6. (a)	Want $\sin(\ln x) = 0 \Rightarrow \ln x = (0,) \pi, (2\pi,)$	M1	Sets equal to 0 and extracts second solution
	$\Rightarrow x = (1,) e^{\pi}, (\ldots)$	M1	for sin to $\ln x$ Sets e to their " π "
	$\rightarrow x = (1, j, c), (\dots)$	A1 (3)	Must give only the one answer
(b)	$y = x \sin(\ln x) \Rightarrow \frac{dy}{dx} = x \cdot \cos(\ln x) \cdot \frac{1}{x} + 1 \cdot \sin(\ln x)$	M1	Use of the Product Rule accept $y_{0} = (\ln x)y_{0} + 1 \sin(\ln x)$
	$= \cos(\ln x) + \sin(\ln x)$	A1	$x \cos(\ln x) \times + 1.\sin(\ln x)$ All correct, simplified
	$y = x \cos(\ln x) \Rightarrow \frac{dy}{dx} = x - \sin(\ln x) \cdot \frac{1}{x} + 1 \cdot \cos(\ln x)$	M1	With Product Rule
	$= \cos(\ln x) - \sin(\ln x)$	A1	All correct, simplified
	Combining the two: $\int \cos(\ln x) dx = \frac{1}{2} x \left(\sin(\ln x) + \cos(\ln x) \right) (+k_1)$	M1 A1	Must be a genuine attempt
	$\int \sin(\ln x) dx = \frac{1}{2} x \left(\sin(\ln x) - \cos(\ln x) \right) (+k_2)$	A1 (7)	(Ignore missing constants of integration)
	Allow alternative methods such as substitution $u = \ln x$ or integration by parts for the final method mark.		
(c) (i)	Let $S = \int x \sin(\ln x) dx$ and $C = \int x \cos(\ln x) dx$.		
	Method I		ſ
	$S = \int x \sin(\ln x) \cdot 1 \mathrm{d}x$	M1	Use of $\int n$. by parts on <i>S</i>
	$= x^{2} \sin(\ln x) - \int x \left[\cos(\ln x) + \sin(\ln x)\right] dx$	A1	Correct (unsimplified)
	i.e. $2S = x^2 \sin(\ln x) - C$	M1	Use of $\int n$. by parts on <i>C</i>
	$C = \int x \cos(\ln x) \cdot 1 dx$ = $x^2 \cos(\ln x) - \int x \cdot [\cos(\ln x) - \sin(\ln x)] dx$	A1	Correct (unsimplified)
	i.e. $2C = x^2 \cos(\ln x) + S$	M1	Solves simultaneously for <i>S</i> and <i>C</i>
	Eliminating C then gives	M1	Rearranges to find $S = \dots$
	$S = \frac{1}{2}x^{2}\sin(\ln x) - \frac{1}{4}x^{2}\cos(\ln x) - \frac{1}{4}S$	A1	Correct answer
	Recognising and removing the "loop" $\Rightarrow S = \frac{1}{2} \frac{r^2}{2} \frac{2r}{r} \frac{r}{r} \frac{r}{r$		(Ignore missing "+ k ")
	$\Rightarrow S = \frac{1}{5}x^2 \left(2\sin(\ln x) - \cos(\ln x)\right) (+k)$	(7)	

1			
	Method II		
	$S = \int \sin(\ln x) x \mathrm{d}x$	M1	Use of $\int \mathbf{n}$. by parts on <i>S</i>
	$= \frac{1}{2}x^{2}\sin(\ln x) - \int \frac{1}{2}x^{2}.\cos(\ln x) \cdot \frac{1}{2} dx$		J
		A1	Correct (unsimplifed)
	i.e. $S = \frac{1}{2}x^2 \sin(\ln x) - \frac{1}{2}C$		
		M1	Use of $\int \mathbf{n}$. by parts on <i>C</i>
	$C = \int \cos(\ln x) . x \mathrm{d}x$		Use of J II. by parts of C
	$= \frac{1}{2}x^{2}\cos(\ln x) - \int \frac{1}{2}x^{2} \cdot -\sin(\ln x) \cdot \frac{1}{x} dx$	A1	Correct, unsimplified
		M1	Solves simultaneously for
	Eliminating C then gives $S = \frac{1}{2}x^{2}\sin(\ln x) - \frac{1}{4}x^{2}\cos(\ln x) - \frac{1}{4}S$		S
	Recognising and removing the "loop"	M1	Rearranges to $S = \dots$
	$\Rightarrow S = \frac{1}{5}x^2 \left(2\sin(\ln x) - \cos(\ln x)\right) (+k)$	A1 (7)	Ignore missing "+ k "
			Mustingly by use of the
	Method III	M1	Must include use of the Product Rule
	Differentiate. $y_1 = x^2 \sin(\ln x)$	A1	Correct, unsimplified
	$\frac{\mathrm{d}y_1}{\mathrm{d}x} = x^2 \cos(\ln x) \cdot \frac{1}{x} + 2x \sin(\ln x)$	M1	Must include use of the
	$= x\cos(\ln x) + 2x\sin(\ln x)$	A1	Product Rule Correct, unsimplified
	Differentiate. $y_2 = x^2 \cos(\ln x)$		
	$\frac{dy_2}{dx} = x^2 \cdot -\sin(\ln x) \cdot \frac{1}{x} + 2x\cos(\ln x)$		
		M1	Attempt to eliminate the
	$= -x\sin(\ln x) + 2x\cos(\ln x)$		unwanted terms
	There $2u = 5$ using (h_{2}, u)	M1	Rearranges to find S
	Then $2y_1 - y_2 = 5x \sin(\ln x)$	A1	Correct answer
	Turning it round from differentiation to integration		(Ignore missing "+ k ")
	$\int x \sin(\ln x) dx = \frac{1}{5} (2x^2 \sin(\ln x) - x^2 \cos(\ln x)) (+k)$	(7)	
	Method IV $I = \int u \sin(\ln u) du =$		
	$I = \int x . \sin(\ln x) dx =$		Uses the result of (b) in
	$\frac{x}{2}(\sin(\ln x) - \cos(\ln x))x - \frac{1}{2}\int x\sin(\ln x) - x\cos(\ln x)dx$	M1 A1	application of parts on I
			Correct unsimplifed
	$J = \int x \cdot \cos(\ln x) dx =$	M1	Uses the result of (h) in
		A1	Uses the result of (b) in application of parts on <i>J</i>
	$\frac{x}{2}\left(\sin(\ln x) + \cos(\ln x)\right)x - \frac{1}{2}\int x\sin(\ln x) + x\cos(\ln x)dx$		Correct unsimplified
	$3I = x^2 \left(\sin(\ln x) - \cos(\ln x) \right) + \int x \cos(\ln x) dx$		
	$= x^{2} (\sin(\ln x) - \cos(\ln x)) + J$	M1	Solves simultaneously to
		1411	achieve and equation in I
	$3J = x^{2} \left(\sin\left(\ln x\right) + \cos\left(\ln x\right) \right) - \int x \sin\left(\ln x\right) dx$		
	$= x^2 \left(\sin\left(\ln x\right) + \cos\left(\ln x\right) \right) - I$		
		M1	Rearranges to correct
		M1 A1	integral for <i>I</i> and achieves correct answer (ignore <i>k</i>)

	$\Rightarrow 9I = 3x^2 \left(\sin(\ln x) - \cos(\ln x) \right) + x^2 \left(\sin(\ln x) + \cos(\ln x) \right) - I$			
	$\Rightarrow I = \frac{1}{5}x^2 \left(2\sin(\ln x) - \cos(\ln x)\right)(+k)$			
	Method V			
	$u = \ln x \Longrightarrow x du = dx$ (oe) and substitutes to get	M1	Selects and makes an	
	$I = \int x \sin(\ln x) dx = \int e^u \sin(u) \cdot e^u du$	A1	appropriate substitution. Correct in terms of <i>u</i>	
	$= -\mathrm{e}^{2u} \cdot \cos u - 2\int \mathrm{e}^{2u} (-\cos u) \mathrm{d}u$	M1A1	Applies integration by parts either way round	
	$=-e^{2u}.\cos u + 2(e^{2u}.\sin u - 2\int e^{2u}.\sin u du)$		(mark appropriately)	
	$\Rightarrow 5I = 2e^{2u} . \sin u - e^{2u} . \cos u$	M1	Applies parts a second time in same direction.	
	$\Rightarrow I = \frac{1}{5} \left(2x^2 \sin\left(\ln x\right) - x^2 \cos\left(\ln x\right) \right) (+k)$	M1	Gathers <i>I</i> terms together	
		A1 (7)	Undoes substitution.	
(c) (ii)		M1	Attempted	
	Use of limits $(1, \text{ their ans. to } (a))$ in their S			
	Area of $R = \frac{1}{5}e^{2\pi}(2.0 - (-1)) - \frac{1}{5}(2.0 - 1)$ = $\frac{1}{5}(e^{2\pi} + 1)$	A1	Correct Given Answer from fully correct working	
	$=\frac{1}{5}(e^{2}+1)$	(2)		
		Total 19 marks		

Question	Scheme	Marks	Notes
7. (a)	$DB = \sqrt{\left(a - x\right)^2 + b^2}$	B1	May be implied by use in formula
	Time taken is thus $t = \frac{x}{\lambda} + \sqrt{(a-x)^2 + b^2}$	B1	Correct expression
	Differentiating w.r.t. x $dt = 1$ (1 - 1 (1 - 1 - 2)) $-\frac{1}{2}$	M1	Attempts differentiation of square root using chain rule.
	$\frac{dt}{dx} = \frac{1}{\lambda} + \frac{1}{2} \left((a - x)^2 + b^2 \right)^{-\frac{1}{2}} \times 2(a - x) \times (-1)$		Correct differentiation of square root term
	$\Rightarrow \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{1}{\lambda} - \frac{a - x}{\sqrt{(a - x)^2 + b^2}}$	A1 (5)	Given Answer legitimately obtained
(b) (i)	$\frac{\mathrm{d}t}{\mathrm{d}x} = 0 \implies \sqrt{(a-x)^2 + b^2} = \lambda(a-x)$	M1	Setting $\frac{dt}{dx} = 0$ & squaring
	$\Rightarrow (a-x)^2 + b^2 = \lambda^2 (a-x)^2$ $\Rightarrow \qquad b^2 = (\lambda^2 - 1)(a-x)^2$		
	$\Rightarrow \frac{b^2}{\lambda^2 - 1} = (a - x)^2 \Rightarrow \frac{b}{\sqrt{\lambda^2 - 1}} = a - x \text{ (as } x < a)$	M1(S+)	Rearranging for x May expand and solve quadratic in x
	and $x = a - \frac{b}{\sqrt{\lambda^2 - 1}}$ or $x = a - \frac{b\sqrt{\lambda^2 - 1}}{\lambda^2 - 1}$ oe	A1 (3)	Correct solution selected and simplified (if using formula)
(b) (ii)	For $x \ge 0$, $\sqrt{\lambda^2 - 1} \ge \frac{b}{a} \implies \lambda \ge \sqrt{1 + \frac{b^2}{a^2}}$	M1	Attempt to find <i>x</i> in required interval. Accept showing the reverse implication for the
	(S+ if the $x \le a$ case is commented/shown)	A1 (2)	M. Given Answer legitimately obtained
(b) (iii)	$\frac{1}{dx^2} = -\left\{\frac{1}{D}\right\} \text{ where } D = (a-x)^2 + b^2 \text{ and}$	M1	Attempt at 2 nd derivative (may be minor slips but it should look plausible)
	$N = (-1)\sqrt{(a-x)^2 + b^2} - (a-x)\left(-\frac{a-x}{\sqrt{(a-x)^2 + b^2}}\right)$ $\frac{d^2t}{dx^2} = \frac{(a-x)^2 + b^2 - (a-x)^2}{\left((a-x)^2 + b^2\right)^{3/2}} = \frac{b^2}{\left((a-x)^2 + b^2\right)^{3/2}}$	A1	Correct unsimplified answer.
	((a-x) + b) $((a-x) + b)> 0 hence a Minimum$	A1 (3)	Correctly concluded from correct second derivative.
(c) (i)	Then $t = \frac{a}{\lambda} - \frac{b}{\lambda\sqrt{\lambda^2 - 1}} + \sqrt{\frac{b^2}{\lambda^2 - 1} + b^2}$ = $\frac{a}{\lambda} - \frac{b}{\lambda\sqrt{\lambda^2 - 1}} + \frac{b\lambda}{\sqrt{\lambda^2 - 1}}$	M1	Substituting for <i>x</i>
	$\lambda = \frac{\lambda}{\lambda} \sqrt{\lambda^2 - 1} = \frac{1}{\lambda} \left(a + \frac{b(\lambda^2 - 1)}{\sqrt{\lambda^2 - 1}} \right) = \frac{a + b\sqrt{\lambda^2 - 1}}{\lambda}$	A1 (2)	Correct in terms of $\sqrt{\lambda^2 - 1}$
(c) (ii)	t minimised when $x = 0$ $\Rightarrow t = \sqrt{a^2 + b^2}$	M1	Finds time for $x = 0$ from their equation.
	$\Rightarrow t = \sqrt{a} + b$	A1 (2)	Correct answer.

(d)	$t_{A} = \frac{a+b}{\lambda}$ $t_{A} < t_{x} \text{ provided } \frac{a+b}{\lambda} < \frac{1}{\lambda} \left(a+b\sqrt{\lambda^{2}-1}\right)$ i.e. $1 < \sqrt{\lambda^{2}-1}$ i.e. $\lambda > \sqrt{2}$	B1 M1 A1 (3)				
S2	 Award S1 for a clear and concise solution that is EITHER fully correct and is succinct in (a) and (b) OR that scores 11+ in (a) and (b) and includes an S+ point in (b) Award S2 for a solution that satisfies the S1 award and in addition scores at least 5 marks from (c) and (d) and includes at least one S+ point 			(2)	
	S+ opportunities: for justifying – or just noting – the taking of a positive square-root in (b) (i) for considering the $x \le a$ end in (b)(ii). for properly handled inequalities in (d) for any innovative ways used throughout the question. Total 20 + 2 marks					

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom