edexcel

Mark Scheme (Results)

Summer 2014

Pearson Edexcel Advanced Extension Award in Mathematics
(9801/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Qu	Scheme	Mark	Notes
1. (a)	$y=\ln (2 x-5) \Rightarrow \mathrm{e}^{y}=2 x-5$	M1	$1^{\text {st }}$ stage to f^{1} - use of e
	So $\mathrm{f}^{-1}(x)=\frac{\mathrm{e}^{x}+5}{2}$	A1 (2)	Correct inverse
(b)	$\mathrm{g}(x)=\mathrm{f}^{-1} \mathrm{fg}(x)=\frac{\mathrm{e}^{\ln \left(\frac{x+10}{x-2}\right)}+5}{2}$	M1	Attempt to use a suitable strategy to find $\mathrm{g}(x)$
	$\begin{aligned} =\frac{\frac{x+10}{x-2}+5}{2}=\frac{x+10+5 x-10}{2(x-2)} & \\ & =\frac{3 x}{x-2} \quad(x>2) \end{aligned}$	A1 A1 (3)	Deal with $\mathrm{e}^{\ln }$ and obtain a correct expression Correct simplified expression.
ALT(b)	$\mathrm{fg}(x)=\ln (2 \mathrm{~g}-5)=\ln \left(\frac{x+10}{x-2}\right)$ or $2 g-5=\frac{x+10}{x-2}$	M1	Allow $2 g \pm 5$
	$2 \mathrm{~g}=\frac{x+10}{x-2}+5$ or $\frac{x+10+5(x-2)}{x-2}, \Rightarrow \mathrm{~g}=\frac{3 x}{x-2}$	A1,A1 [5]	$\begin{aligned} & 1^{\text {st }} \text { A1 for } 2 g=\ldots \\ & 2^{\text {nd }} \text { A0 for } \frac{6 x}{2 x-4} \end{aligned}$

Qu	Scheme	Mark	Notes
2.	$\sin x(3 \sin x+2)=3 \cos x(3 \sin x+2)$	M1	Factorize both sides
	$0=(3 \sin x+2)(3 \cos x-\sin x)$	M1	Finds a $2^{\text {nd }}$ factor(o.e.)
	$3 \cos x-\sin x=0 \Rightarrow \underline{\tan x=3}$	A1	For $\tan x=3$ (Dep on at least one M)
	$3 \sin x+2=0 \Rightarrow \sin x=\frac{-2}{3} \text { or e.g. } 3 \tan x+2 \sqrt{1+\tan ^{2} x}=0$	A1	For $\sin x=\ldots$ or eqn in $\tan x$
	[Therefore $\left.\cos ^{2}(x)=\frac{5}{9}\right]$ or $\tan x= \pm \frac{2}{\sqrt{5}}$	M1	Attempt to find $\tan x$
	(By considering size of x [or quadrant]) $\tan x=-\frac{2}{\sqrt{5}}$	A1 [6]	Must have -

Qu	Scheme	Mark	Notes
3. (a)	+ +	(i)	
		B1	Correct shape and (0,-3)
(ii)	3 3 $\xrightarrow[3]{3}$	B1	Crossing x-axis at -1 and 3
	${ }^{-1}$	(ii)	Symmetrical shape with
	$3 \times 1{ }^{-3}$	B1	2 minima and $x= \pm 3$
		B1	Correct shape at ($0,-3$)
(iii)	$\begin{array}{l\|l} -v_{3} & 3 \\ \hline \end{array}$	B1	Correct for $x>0$ and $(3,0)$ marked
	-3	B1 B1 (7)	Correct for $x \leq 0$ and $-\sqrt{3}$ Zero gradient at $(0,-3)$ Clear "kink" @ (0, -3)
(b)	$x>0: x^{2}-2 x-3=2 x \Rightarrow x^{2}-4 x-3=0$ so $x=\underline{2+\sqrt{7}}$	M1A1	Method for positive $\operatorname{root}(\mathrm{A} 0$ for >1 root $)$
	$x<0: x^{2}-2 x-3=-2 x \Rightarrow x^{2}-3=0$ so $x=\underline{-\sqrt{3}}$	M1A1 (4) [11]	Negative root (A0 for > 1 root)

Qu	Scheme	Mark	Notes
4. (a)	You must see general terms used for M marks in (a) r th term $=\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) \ldots\left(-\frac{1}{2}-r+1\right)}{r!}(-x)^{r}$	M1	Sub. $n=-\frac{1}{2}$ and " x " $=-x$. Condone $-x^{r}$
	$=\frac{(-1)^{r}}{} \times \frac{(1.3 .5 \ldots(2 r-1))}{} \times(-1)^{r} x^{r}$	M1	Remove - signs
	$=\frac{1}{r!} \times \frac{(2.2 .2 \ldots 2)}{} \times(-1) \times$	M1	Simplify numerator
	$=(1) \times \frac{1 \cdot 2.3 .4 .5 \ldots(2 r-1)(2 r)}{r!2^{r} \times 2^{r} r!} x^{r}$	M1	Insert 2^{r} and r !
	So sum is $\sum_{r=0}^{\infty}\binom{2 r}{r}\left(\frac{x}{4}\right)^{r}$	A1cso (5)	$\begin{aligned} & \text { S+ for comment about } \\ & r=0 \text { case } \end{aligned}$
(b)	$\left(9-4 x^{2}\right)^{-\frac{1}{2}}=\frac{1}{3}\left(1-\frac{4 x^{2}}{9}\right)^{-\frac{1}{2}}=\frac{1}{3} \sum_{r=0}^{\infty}\binom{2 r}{r}\left(\frac{A x^{2}}{9 \times A}\right)^{r}$	M1 A1cso	Adjust to form $k(\ldots . .)^{-1 / 2}$
	So $\quad q=2 r+1$	A1 (3)	(M1A0A1 is possible)
(c)	$\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{x^{2 r}}{3^{2 r+1}}\right)=\frac{2 r \times x^{2 r-1}}{3^{2} \times 3^{2 r-1}}=\frac{2 r}{9} \times\left(\frac{x}{3}\right)^{2 r-1}$	M1 dM1	Identify differentiation Chain rule(allow 1 slip)
	$\text { So sum }=\frac{\mathrm{d}}{\mathrm{~d} x}\left(9-4 x^{2}\right)^{-\frac{1}{2}}=-\frac{1}{2}\left(9-4 x^{2}\right)^{-\frac{3}{2}} \times(-8 x)=\frac{4 x}{\left(9-4 x^{2}\right)^{\frac{3}{2}}}$	A1 (3)	(S+ for dealing with $r=0$)
(d)	Require $\frac{x^{2 r-1}}{3^{2 r-1}}=\frac{\sqrt{5}}{5^{r}}=\frac{1}{(\sqrt{5})^{2 r-1}}$ so $x=\frac{3}{\sqrt{5}}$	M1	Attempt a suitable substitution for x
	$\text { Sum }=4 \times \frac{3}{\sqrt{5}} \times \frac{1}{\left(9-4 \times \frac{9}{5}\right)^{\frac{3}{2}}}=4 \times \frac{3}{\sqrt{5}} \times \frac{5 \sqrt{5}}{27}=\frac{20}{\underline{9}}$	A1 (2)	
		[13]	

\begin{tabular}{|c|c|c|c|}
\hline Qu \& Scheme \& Mark \& Notes

\hline 5. (a) \& $$
\begin{aligned}
\overrightarrow{A B}=\left(\begin{array}{c}
7 \\
5 \\
-5
\end{array}\right), \overrightarrow{A C}=\left(\begin{array}{l}
4 \\
2 \\
4
\end{array}\right), \overrightarrow{A D}=\left(\begin{array}{c}
8 \\
-2 \\
2
\end{array}\right), \\
\overrightarrow{B C}=\left(\begin{array}{c}
-3 \\
-3 \\
9
\end{array}\right), \overrightarrow{B D}=\left(\begin{array}{c}
1 \\
-7 \\
7
\end{array}\right), \overrightarrow{C D}=\left(\begin{array}{c}
4 \\
-4 \\
-2
\end{array}\right)
\end{aligned}
$$ \& M1

A2

(3) \& | Attempt at least one and condone \pm |
| :--- |
| All correct (-1 e.e.o.o.) |

\hline (b) \& $$
\begin{aligned}
& |\overrightarrow{A B}|=\sqrt{99},|\overrightarrow{A C}|=6,|\overrightarrow{A D}|=\sqrt{72}, \\
& |\overrightarrow{B C}|=\sqrt{99},|\overrightarrow{B D}|=\sqrt{99},|\overrightarrow{C D}|=6 \\
& (\overrightarrow{A C} \perp \overrightarrow{C D}) \text { so length of base }=\underline{6}
\end{aligned}
$$ \& M1

A1 \& | Attempt at least 3 lengths |
| :--- |
| (S+ for clear reason) |

\hline (ii) \& Need $\overrightarrow{A B} \bullet \overrightarrow{A D}$ or $\overrightarrow{B D} \bullet \overrightarrow{A D}$

$$
\begin{array}{r}
\cos \theta=\frac{\frac{1}{2}|\overrightarrow{A D}|}{|\overrightarrow{A B}|}=\frac{3 \sqrt{2}}{3 \sqrt{11}} \text { or } \cos \theta=\frac{36}{\sqrt{99} \times \sqrt{72}} \\
\cos \theta=\frac{\sqrt{2}}{\sqrt{11}} \text { (о.e.) }
\end{array}
$$ \& M1

M1

A1 \& | Identify a suitable pair |
| :--- |
| Finding an expression for $\cos \theta$ using trigonometry or . prod. |

\hline (iii) \& Pythagoras: $h^{2}+\frac{" 72 "}{4}=" 99$ ", so $\underline{h=9} \quad$ May use $|\overrightarrow{B M}|$ \& M1A1 \& M1 ft their 72 and 99 (full method)

\hline (iv) \& $$
\text { Position vector }=\mathbf{a}+\overrightarrow{C D} \text { (o.e.), }=\left(\begin{array}{c}
-2 \\
3 \\
-1
\end{array}\right)+\prime\left(\begin{array}{c}
4 \\
-4 \\
-2
\end{array}\right) \prime=\underline{\left(\begin{array}{c}
2 \\
-1 \\
-3
\end{array}\right)}
$$ \& M1

A1 (9) \& Suitable expression using known vectors ft their $C D$

\hline \multirow[t]{3}{*}{(c)} \& Let M be midpoint of $A D$. Eq'n of $B M$ is $\mathbf{r}=\left(\begin{array}{c}5 \\ 8 \\ -6\end{array}\right)+t\left(\begin{array}{c}-3 \\ -6 \\ 6\end{array}\right)$ \& M1 \& | Attempt equation of $B M$ or other line containing the other vertex. |
| :--- |
| Or can award for just vector $B M$ |

\hline \& When $t=1 \mathbf{r}$ gives $O M$, so use $t=2$ to get other vertex \& M1 \& Full method

$$
\text { e.g. } \mathbf{a}+\overrightarrow{B D}
$$

\hline \& \[
=\left($$
\begin{array}{c}
-1 \\
-4 \\
6
\end{array}
$$\right)

\] \& | A1 |
| :--- |
| (3) [15] | \& Allow $\left(\begin{array}{c}1 \\ 4 \\ -6\end{array}\right)$ M1M0A0

\hline
\end{tabular}

Qu	Scheme	Mark	Notes
7.(a)	$x^{2}+y^{2}=\pi^{2}$	B1 (1)	o.e.
(b)	$O A=\theta, A G=\pi-\theta$	B1,B1	$1^{\text {st }} \mathrm{B} 1$ may be implied by $G A$ and diagram
	Let X be the point vertically below G such that angle $G X A=90^{\circ}$ Or $x=\sin \theta+G A \cos \theta$ or $y=G A \sin \theta+1-\cos \theta$	M1	Clear method for x or y
	So $\quad x=T A \sin \theta+A X=\sin \theta+(\pi-\theta) \cos \theta$	A1cso	
	and $\quad y=1-T A \cos \theta+G X=1-\cos \theta+(\pi-\theta) \sin \theta$	A1cso (5)	
(c)	$\text { Area }=\int_{x=0}^{x=\pi} y \frac{\mathrm{~d} x}{\mathrm{~d} \theta} \mathrm{~d} \theta, \frac{\mathrm{~d} x}{\mathrm{~d} y}=\cos \theta-(\pi-\theta) \sin \theta-\cos \theta$,M1	For $\mathrm{d} x / \mathrm{d} \theta$ Allow 1 slip
	$\text { Area }=\int^{0}[1-\cos \theta+(\pi-\theta) \sin \theta][-(\pi-\theta) \sin \theta] \mathrm{d} \theta$	A1	Ignore limits
	Let $u=\pi-\theta, \cos (\pi-\theta)=-\cos \theta$ and $\sin (\pi-\theta)=\sin \theta$	M1,M1	Suitable sub
	$\text { Area }=-\int_{0}^{\pi}\left(-u \sin u-u \cos u \sin u-u^{2} \sin ^{2} u\right) \mathrm{d} u \rightarrow \text { ans }$	A1cso (5)	Simplify to printed answer. Limits correctly derived
(d)	$\int_{0}^{\pi} u^{2} \sin ^{2} u \mathrm{~d} u=\int_{0}^{\pi} \frac{u^{2}}{2} \mathrm{~d} u-\int_{0}^{\pi} \frac{u^{2}}{2} \cos 2 u \mathrm{~d} u$	M1	Use of $\sin ^{2} x$ in terms of $\cos 2 x$
	$=\frac{\pi^{3}}{6},-\left\{\left[\frac{u^{2}}{4} \sin 2 u\right]^{\pi}-\int^{\pi} u \frac{\sin 2 u}{2} \mathrm{~d} u\right\}$	A1cso	For $\frac{\pi^{3}}{6}$
		,\{M1\}	M1 for int. by parts
	$=\frac{\pi^{3}}{6}+\int_{0}^{\pi} u \sin u \cos u \mathrm{~d} u$	A1cso (4)	Show [..]=0 and simplify to ans.
(e)	$\int_{0}^{\pi} u \sin u \mathrm{~d} u=[-u \cos u]_{0}^{\pi}+\int_{0}^{\pi} \cos u \mathrm{~d} u$	M1	Use of parts to integrate (Ignore limits for Ms)
	$=\pi$	A1	
	$\int_{0}^{\pi} u \sin u \cos u \mathrm{~d} u=\int_{0}^{\pi} u \frac{\sin 2 u}{2} \mathrm{~d} u=\left[-u \frac{\cos 2 u}{4}\right]_{0}^{\pi}+\int_{0}^{\pi} \frac{\cos 2 u}{4} \mathrm{~d} u$	M1	
	$=-\frac{\pi}{4}$	A1	
	Area between curve and +ve axes $=\frac{\pi^{3}}{6}+\pi-2 \times \frac{\pi}{4}=\frac{\pi^{3}}{6}+\frac{\pi}{2}$	A1	
	Total area available $=2\left[\frac{\pi^{3}}{6}+\frac{\pi}{2}\right]-$ tower + semicircle	M1	Suitable strategy
	$\text { Area of semicircle }=\frac{\pi^{3}}{2} \quad \underline{\text { or }} \text { area of tower's base }=\pi$	B1	For either
	So area reachable is $\frac{5 \pi}{6}$	A1 (8)	
		[23]	

Awarding of S and T marks		
Questions	Marks	For a fully correct solution that is succinct or includes an S+ point
3,4	S1	
		For a fully correct solution that is succinct and includes some S+ points
$5,6,7$	S2	For a fully correct solution that is succinct but does not mention any S+ points
$5,6,7$	S1	For a fully correct solution that is slightly laboured but includes an S+ point
$5,6,7$	S1	For a score of $n-1$ but solution is otherwise succinct or contains an S+ point
$5,6,7$	S1	Maximum S score is 6
ALL	T1	For at least half marks on all questions

