Mark Scheme (Results)

Summer 2013

AEA Mathematics (9801/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA036372
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

AEA June 2013 Mark Scheme - Final

Question	Scheme	Marks	Notes
1. (a)	$\begin{aligned} & \quad \frac{n(n-1)}{2!}\left(\frac{12 n}{5}\right)^{2}=\frac{n(n-1)(n-2)}{3!}\left(\frac{12 n}{5}\right)^{3} \\ & 3 \times 5=n(n-2) \times 12 \text { or } 4 n^{2}-8 n-5=0 \quad \text { (o.e.) } \\ & (2 n+1)(2 n-5)=0 \quad n=-\frac{1}{2}, \frac{5}{2} \\ & n=-\frac{1}{2} \text { in }\left\|\frac{12 n x}{5}\right\|<1 \text { gives }\|x\|<\frac{5}{6} \text { and } n=\frac{5}{2} \text { in }\left\|\frac{12 n x}{5}\right\| \text { gives }\|x\|<\frac{1}{6} \\ & \text { So should choose } n=-\frac{1}{2} \\ & \text { May sub } x=\frac{1}{2} \text { and get }\|n\|<\frac{5}{6} \text { for M1 and A1 for stating } n=-\frac{1}{2} \end{aligned}$	A1 (2)	For attempting suitable equation. Ignore x s but must use binomial. Correct 3TQ in n May be other factors Dep on $1^{\text {st }}$ M1 Both \& no others unless revoked later Attempt both cases Just check $n=-\frac{1}{2}$ SC B1

Question	Scheme	Marks	Notes
2. (a)	$\sin (90-x)=\sin 90 \cos x-\cos 90 \sin x=1 . \cos x-0 \cdot \sin x=\cos x$		One intermediate line
(b)	$2 \sin (\theta+17) \cos (\theta+17)=\cos (\theta+8) \Rightarrow \sin [2(\theta+17)]=\cos (\theta+8)$	M1	Use of $\sin 2 A=\ldots$
	$2 \theta+34=90-(\theta+8)$	dM1	Use of (a) - not trig θ
	$3 \theta=82-34=48$ so $\theta=\mathbf{1 6}$	A1	
	$2 \theta+34=180-[90-(\theta+8)] \quad \text { or } \quad 2 \theta+34=[90-(\theta+8)]+360$		$2^{\text {nd }}$ eqn for θ
	$\theta=98-34$ or $\quad \underline{\theta=64}$	A1	
	$3 \theta=48+460 \quad \theta=\mathbf{1 3 6}$	A1	
	$\theta=256$	A1 (7)	
NB	$\sin (2 \theta+34)-\sin (82-\theta)$ gives $2 \cos [(\theta+116) / 2] \sin [(3 \theta-48) / 2]$ Then: $\theta / 2+58=90$ gets M1 and e.g. $3 \theta / 2-24=0$ gets M1	(8)	

\begin{tabular}{|c|c|c|c|}
\hline Question \& Scheme \& Marks \& Notes

\hline \multirow[t]{4}{*}{3. (a)} \& $-7+2 \lambda=7+10 \mu$ and $1-3 \lambda=-6-\mu$ (o.e.) \& M1 \& Form suitable eqns

\hline \& $\Rightarrow 14 \mu=-14 \quad \mu=-1,(\lambda=2)$ \& M1A1 \& M1 for eqn in 1 var

\hline \& Check in $3^{\text {rd }}$ equation: $7=p-4 \mu \quad \underline{p}=\mathbf{3}$ \& A1 \& Check in $3^{\text {rd }}, p=\ldots$

\hline \& Position vector of C is $\left(\begin{array}{c}-3 \\ 7 \\ -5\end{array}\right)$ \& A1

(5) \& Accept as coordinates

\hline (b) \& $\mu=-2 \Rightarrow 7-2 \times 10=-13,3-2 \times-4=11$ and $-6-2 \times-1=-4$ \& | B1 |
| :--- |
| (1) | \& See $\mu=-2$ \& ans

\hline (c) \& $\overrightarrow{C A}=\left(\begin{array}{c}-4 \\ 0 \\ 6\end{array}\right)$ and $\overrightarrow{C B}=\left(\begin{array}{c}-10 \\ 4 \\ 1\end{array}\right)$ giving $\overrightarrow{C A} \bullet \overrightarrow{C B}=40+0+6=46$ \& M1 \& | Attempts a suitable scalar product. |
| :--- |
| Allow 1 sign slip |
| Allow \pm |

\hline \& $$
\cos (A C B)=\frac{46}{\sqrt{52} \sqrt{117}},=\frac{46}{2 \sqrt{13} \times 3 \sqrt{13}} \quad=\frac{23}{39} \text { (o.e.) }
$$ \& \[

$$
\begin{aligned}
& \mathrm{dM} 1 \\
& \mathrm{~A} 1
\end{aligned}
$$

\] \& | Allow \pm |
| :--- |
| A1 for an exact fraction (no surds) |

\hline \multirow[t]{3}{*}{(d)} \& Form Rhombus. Let $\overrightarrow{C M}=\frac{1}{2} \overrightarrow{C A}$ then $\overrightarrow{C D}=\overrightarrow{C B}+3 \overrightarrow{C M}$

$$
(-16) \quad(-19)
$$ \& M1 \& Attempt suitable rhombus or unit vectors

\hline \& $$
\overrightarrow{C D}=\binom{4}{10} \text { or } \overrightarrow{O D}=\binom{11}{5}
$$ \& A1 \&

\hline \& \[
\mathbf{r}=\overrightarrow{O C}+t \overrightarrow{C D}, \quad \mathbf{r}=\left($$
\begin{array}{c}
-3 \tag{o.e.}\\
7 \\
-5
\end{array}
$$\right)+t\left($$
\begin{array}{c}
-8 \\
2 \\
5
\end{array}
$$\right)

\] \& | dM1 |
| :--- |
| A1 |
| (4) |
| (13) | \& Dep. On $1^{\text {st }} \mathrm{M} 1$. For attempt equation of line

\hline
\end{tabular}

Question	Scheme	Marks	Notes
4. (a)	$a_{1}=1, a_{2}=3, a_{3}=7, a_{4}=15, a_{5}=31, a_{6}=63$	B1	
		(1)	
(b)	Sub: $a_{r+1}=2^{r+1}-1 ; 2 a_{r}+1=\underline{2\left(2^{r}-1\right)+1}=2^{r+1}-1$	B1cso	Correct demonstration in r
(c)		(1)	
	$\sum a_{r}=\sum 2^{r}-\sum 1=\sum 2^{r}-n$	B1	For $\sum 1=n$
	$\sum 2^{r}=\frac{2\left(2^{n}-1\right)}{2-1} \text {, therefore } \sum a_{r}=2\left(2^{n}-1\right)-n \quad \text { (o.e.) }$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Use of GP formula Any correct expres A1 needs $-n$ too.
		(3)	
(d)	$a_{r+1}=2 a_{r}+1 \Rightarrow \underline{a_{r+1}>2 a_{r}} \rightarrow \frac{1}{a_{1}}<\frac{1}{2} \times \frac{1}{a_{n}}$	B1cso	Or equiv in words
	$\square a_{r+1} \quad 2 \quad a_{r}$	(1)	
(e)	$\frac{1}{a_{4}}<\frac{\frac{1}{2}}{a_{3}} \text { and } \frac{1}{a_{5}}<\frac{\frac{1}{2}}{a_{4}}<\frac{\left(\frac{1}{2}\right)^{2}}{a_{3}}$	M1	Use of (d) to get any 2 inequality for $4^{\text {th }}$ and $5^{\text {th }}$ terms
	So: $\sum_{r=1}^{5} \frac{1}{a_{r}}<1+\frac{1}{3}+\frac{1}{7}+\frac{\left(\frac{1}{2}\right)}{7}+\frac{\left(\frac{1}{2}\right)^{2} \text { or } \frac{1}{4}}{7}$	A1cso	All 3 inequalities \& no incorrect work
(f)	Lower limit $=1+\frac{1}{3}+\frac{1}{7}=\frac{31}{21}$	B1cso	
	Identify GP $a=\frac{1}{7}, \quad r=\frac{1}{2}$	M1	Correct r or a
	Use ${ }_{\infty}^{\frac{1}{7}}\binom{2}{7}$	dM1	Attempt sum $\|r\|<1$
	Use $\mathrm{S}_{\infty}=\frac{7}{1-\frac{1}{2}}\left(=\frac{2}{7}\right)$		Correct expression or sum
	Upper limit $=1+\frac{1}{3}+\frac{2}{7}=\frac{34}{21}$	A1cso	
		(5)	
		(13)	

Question	Scheme	Marks	Notes
5. (a)	Differentiate: $u v=v \int u d x+u \int v d x$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Attempt to diff Correct prod. rule
	$\div \text { uv leading to } 1=\frac{\int u d x}{u}+\frac{\int v \mathrm{~d} x}{\mathrm{v}}$	A1cso (3)	
(b)	$\frac{\int \mathrm{vd} x}{\mathrm{v}}=\cos ^{2} x$	B1 (1)	$\mathrm{S}+$ for $1-\mathrm{c}^{2}=\mathrm{s}^{2}$
(c)	Diff. $\mathrm{u} \sin ^{2} x=\int \mathrm{ud} x$ gives $\mathrm{u}=\frac{\mathrm{du}}{\mathrm{d} x} \sin ^{2} x+\mathrm{u} 2 \sin x \cos x$	M1	Multiply by u and differentiate Or quotient rule
	$\frac{\mathrm{du}}{\mathrm{~d} x} \sin ^{2} x=\mathrm{u}(1-2 \sin x \cos x) \quad \therefore \frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{~d} x}=\frac{1-2 \sin x \cos x}{\sin ^{2} x}$	dM1 A1cso (3)	Collect u terms
(d)	Separate variables: $\int \frac{1}{u} d u=\int\left(\frac{1-2 \sin x \cos x}{\sin ^{2} x}\right) d x$	M1	Separation of vars Condone missing integral signs.
	RHS $\quad=\int\left(\operatorname{cosec}^{2} x-2 \cot x\right) \mathrm{d} x$	M1	Prepares RHS
	Integrate: $\quad \ln \mathrm{u}=-\cot x,-2 \ln \sin x+c$	A1,A1	+c on $2^{\text {nd }} \mathrm{A} 1$
	$\ln \left(\mathrm{u} \sin ^{2} x\right)=-\cot x \quad(+c)$	M1	Collect ln terms or remove ln
	$\mathrm{u}=A \mathrm{e}^{-\cot x} \operatorname{cosec}^{2} x$	A1cso (6)	No incorrect work
(c)	$y=\mathrm{e}^{\tan x} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\mathrm{e}^{\tan x} \sec ^{2} x \text { or } \mathrm{e}^{\tan x} \frac{\mathrm{~d}}{\mathrm{~d} x}(\tan x)$	M1	For differentiation
	Hence $\quad \mathrm{v}=3 \mathrm{e}^{\tan x} \sec ^{2} x$	$\begin{gathered} \text { A1 (2) } \\ (15) \end{gathered}$	Condone A not B but S-

Question	Scheme	Marks	Notes
6. (a)	$[\mathrm{f}(x)-\lambda \mathrm{g}(x)]^{2}=[\mathrm{f}(x)]^{2}-2 \lambda \mathrm{f}(x) \mathrm{g}(x)+\lambda^{2}[\mathrm{~g}(x)]^{2}$	M1	Attempt to multiply
S+ for area comment	Integrate $\mathrm{d} x$ throughout with inequality	A1cso	No incorrect work
(b)		(2)	
	Treat as quadratic in λ and attempt to use discriminant	M1	$\Delta \&$ identify a, b, c
	Clear reason for use of $b^{2}-4 a c \leq 0$ (or <0) e.g. "no real roots"	M1	Reason for ≤ 0
	Giving: $\begin{equation*} \left[\int \mathrm{f}(x) \mathrm{g}(x) \mathrm{d} x\right]^{2} \leq\left[\int[\mathrm{f}(x)]^{2} \mathrm{~d} x\right] \times\left[\int[\mathrm{g}(x)]^{2} \mathrm{~d} x\right] \tag{о.е.} \end{equation*}$	A1cso	Condone 4s
(c)		(3)	
	$\mathrm{g}(x)=\left(1+x^{3}\right)^{\frac{1}{2}}$ and $\mathrm{f}(x)=1$		
	Then $[E]^{2} \leq\left[\int\left(1+x^{3}\right) \mathrm{d} x\right] \times\left[\int 1^{2} \mathrm{~d} x\right]$	M1	
	$\int^{2}\left(1+x^{3}\right) \mathrm{d} x=\left[x+\frac{x^{4}}{}\right]^{2}=,(2+4)-\left(-1+\frac{1}{4}\right)=27$	M1,	Integration 6.75 (o.e.)
	$\int_{-1}^{2}\left(1+x^{3}\right) \mathrm{d} x=\left[x+\frac{x^{4}}{4}\right]_{-1}^{2}=,(2+4)-\left(-1+\frac{1}{4}\right)=\frac{27}{4}$		
	$\text { So } E^{2} \leq \frac{81}{4} \text { i.e. } E \leq \frac{9}{2}$	A1cso	
(d)		(4)	
	$\int x^{2}\left(1+x^{3}\right)^{\frac{1}{4}} \mathrm{~d} x=\frac{4}{15}\left(1+x^{3}\right)^{\frac{5}{4}}$	M1	$k(.$.$) and 5/4 power$ All correct
	$\left\{\left[\frac{4}{15}\left(1+x^{3}\right)^{\frac{5}{4}}\right]_{-1}^{2}=\right\} \frac{4}{15}\left[(9)^{\frac{5}{4}}-0\right]=\frac{4}{15} \times 9 \sqrt{3}=\frac{12 \sqrt{3}}{5}$	A1cso	Must see one of the expr' between \{..\} and the answer
		(3)	
(e)	Let $E=$ required integral.	B1	Suitable f and g
	$\mathrm{f}(x)=\left(1+x^{3}\right)^{\frac{1}{4}}$ and $\mathrm{g}(x)=x^{2}$	B1	Suitable f and g
	Then $[(\mathrm{d})]^{2} \leq E \times \int_{-1}^{2} x^{4} \mathrm{~d} x$	M1	Suitable inequality for E
	$\int_{-1}^{2} x^{4} \mathrm{~d} x=\left[\frac{x^{5}}{5}\right]_{-1}^{2}=\frac{32}{5}--\frac{1}{5}=\frac{33}{5}$	M1	Allow slip e.g $\frac{16}{5}--\frac{1}{5} \text { or } \frac{32}{5}-\frac{1}{5}$
	So $\quad \frac{144 \times 3}{25} \leq E \times \frac{33}{5} \rightarrow E \geq \frac{144}{55}$	A1cso	
		$\begin{aligned} & (4) \\ & (16) \end{aligned}$	

Awarding of S and T marks		
Questions	Marks	
$2,3,4$	S1	For a fully correct solution that is succinct or includes an S+ point
		For a fully correct solution that is succinct and includes some S+ points
$5,6,7$	S2	For a fully correct solution that is succinct but does not mention any S+ points
$5,6,7$	S1	For a fully correct solution that is slightly laboured but includes an S+ point
$5,6,7$	S1	For a score of $n-1$ but solution is otherwise succinct or contains an S+ point
$5,6,7$	S1	Maximum S score is 6
ALL	T1	For at least half marks on all questions

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA036372 Summer 2013

Llywodraeth Cynulliad Cymru Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

