edexcel 쁯

Mark Scheme (Results)

Summer 2012

AEA Mathematics (9801)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UA032642
All the material in this publication is copyright
© Pearson Education Ltd 2012

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol fwill be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- $\boldsymbol{*}$ The answer is printed on the paper

■
The second mark is dependent on gaining the first

Qu	Scheme	Mark	Notes
1. (a)	$x^{2}-2 x+6=(x-1)^{2}+5 \quad \text { or } \quad 2 x-2=0$ Sketch or work to show min at $(1,5)$ Range $\mathbf{f} \geq 5 \quad$ (Accept $y \geq 5$) (Answer only 3/3) $\operatorname{gf}(x)=3+\sqrt{x^{2}-2 x+6+4},=3+\sqrt{x^{2}-2 x+10}$ $\operatorname{gf}(1)$ or $3+\sqrt{15 "+4}$ Range of $\mathbf{g f} \geq \mathbf{6}$ Domain $=$ domain of $\mathrm{f}=\boldsymbol{x} \geq \mathbf{0}$	M1 A1 A1 (3) M1,A1 (2) M1 A1 B1 (3) [8]	Differentiating or complete the square $x \geq 5$ can score M1A1A0 Clear attempt to find $\mathrm{gf}(1)$ or correct express'
Qu	Scheme	Mark	Notes
2. (a) Use of i	$\begin{aligned} & \sin (2 x+x)=\sin 2 x \cos x+\cos 2 x \sin x \\ &=2 \sin x \cos ^{2} x+\left(\sin x-2 \sin ^{3} x\right) \\ &=2 \sin x-2 \sin ^{3} x+\sin x-2 \sin ^{3} x=3 \sin x-4 \sin ^{3} x \\ & \sin 3 x=3 \cos ^{2} x \sin x,-\sin ^{3} x \quad \text { for M1, M1 } \end{aligned}$	M1 M1 A1cso (3)	Use of $\sin (A+B)$ Use of $\sin 2 x$ and $\cos 2 x$
(b)	$\begin{aligned} & 6 \sin x-2 \sin 3 x=6 \sin x-2\left(3 \sin x-4 \sin ^{3} x\right)=\left[8 \sin ^{3} x\right] \\ & I=\int \cos x 4 \sin ^{2} x \mathrm{~d} x \\ & \quad=\frac{4 \sin ^{3} x}{3}(+c) \text { (o.e.) e.g. } \frac{2}{3} \sin 2 x \cos x-\frac{4}{3} \sin x \cos 2 x(+c) \end{aligned}$	M1 A1 A1 (3)	Attempt to use (a) For $4 \sin ^{2} x \cos x$ only
(c)	$\begin{gathered} \int(3 \sin 2 x-2 \sin 3 x \cos x)^{\frac{1}{3}} \mathrm{~d} x=\int(6 \sin x \cos x-2 \sin 3 x \cos x)^{\frac{1}{3}} \mathrm{~d} x \\ =\int \cos ^{\frac{1}{3}} x 2 \sin x \mathrm{~d} x \text { or } \int\left(8 \cos x \sin ^{3} x\right)^{\frac{1}{3}} \mathrm{~d} x \\ =-\frac{3}{2} \cos ^{\frac{4}{3}} x(+c) \end{gathered}$	$\begin{array}{\|l} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 (4) } \\ {[10]} \\ \hline \end{array}$	Use of $\sin 2 x$ Use of (a) to simplify integrand Attempt int. $\rightarrow k \cos ^{\frac{4}{3}} x$
Qu	Scheme	Mark	Notes
3. (a)	$\begin{aligned} & \text { RHS }=\text { GP } a=2, r=\cos 2 \theta \quad S_{\infty}=\frac{2}{1-\cos 2 \theta} \\ & \left.\cos 2 \theta=1-2 \sin ^{2} \theta \Rightarrow(\text { RHS })=\operatorname{cosec}^{2} \theta \quad \text { (Allow } \frac{k}{\sin ^{2} \theta}\right) \\ & \tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta} \Rightarrow(\text { LHS })=\frac{2 \tan ^{2} \theta}{1-\tan ^{2} \theta} \\ & \text { Equating: } \quad \frac{2 \tan ^{2} \theta}{1-\tan ^{2} \theta}=1+\cot ^{2} \theta=\frac{1+\tan ^{2} \theta}{\tan ^{2} \theta} \\ & \text { so } \quad 3 \tan ^{4} \theta-1=0 \\ & \tan ^{4} \theta=\frac{1}{3} \Rightarrow \tan \theta=\left(\frac{1}{3}\right)^{\frac{1}{4}} \\ & \qquad \tan \theta=3^{-\frac{1}{4}} \text { or } p=-\frac{1}{4} \\ & 1>3^{-\frac{1}{4}}>3^{-\frac{1}{2}} \Rightarrow \tan \frac{\pi}{4}>\tan \theta>\tan \frac{\pi}{6} \\ & \Rightarrow \quad \frac{\pi}{4}>\theta>\frac{\pi}{6} \end{aligned}$	$\begin{array}{\|l} \text { M1,A1 } \\ \text { M1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { dM1 } \\ \text { A1 (8) } \\ \text { M1 } \\ \text { A1 (2) } \\ {[\mathbf{1 0]}} \\ \hline \end{array}$	Identify GP and attempt sum to ∞ for M1 Use $\cos 2 \theta$ to simplify Use of $\tan 2 \theta$ on LHS Equate LHS=RHS and use formula to get eqn in $\tan \theta$ or single trig func. Correct eqn (either line) Solve their equn leading to $\tan \theta=\ldots$ Dep on $4^{\text {th }} \mathrm{M}$ cso

Qu	Scheme	Mark	Notes
4. (a)	Only 3 vertex-vertex distances in a cube $B C$ is shortest so must be side length Volume $=7^{3}=343$ $\begin{aligned} & \stackrel{\text { unu }}{P Q \bullet P R}=21+4+0=25 \\ & \cos (Q P R)=\frac{25}{\sqrt{50} \sqrt{25+\alpha^{2}}}=\frac{1}{2} \\ & \alpha=5 \end{aligned}$ (Allow ± 5) For 60° angle, $P Q=P R=\sqrt{50}$ must be a diagonal of a face Therefore side must be 5 (since face diagonal is side $\times \sqrt{2}$) Diagonal is therefore $5 \sqrt{3}$	M1A1 M1 A1 (5) M1 M1 A1 (3) M1 A1 A1(3) [11]	Attempt all of these three vectors or two and show perpendicular For S+ M1 for attempting one A1 for all 2 or 3 correct Select shortest Requires all M marks Attempt scalar product Use of $\cos 60$ and scalar product formula to get an equation for α Recognize $P Q$ or $P R$ is face diagonal. OK on fig.
Qu	Scheme	Mark	Notes
5. (a)	$\begin{aligned} & \log _{a} x^{n}=\left(\log _{a} x\right)^{n} \Rightarrow n \log _{a} x=\left(\log _{a} x\right)^{n} \\ & n=\left(\log _{a} x\right)^{n-1} \Rightarrow \log _{a} x=n^{\frac{1}{n-1}} \\ & x=a^{n^{\frac{1}{n-1}}} \text { (o.e.) } \end{aligned}$ $\left(\log _{a} x\right)^{3}+\left(\log _{a} x\right)^{2}-5 \log _{a} x=0 \text { or }\left(\log _{a} x\right)^{3}-6 \log _{a} x+5=0$ Let $u=\log _{a} x$ and solve $u^{2}+u-5=0 \rightarrow u=\frac{-1 \pm \sqrt{21}}{2}$ $\begin{aligned} & x_{1}=a^{\frac{-1+\sqrt{21}}{2}}, x_{2}=a^{\frac{-1-\sqrt{11}}{2}} \\ & \log _{a}\left(\frac{x_{1}}{x_{2}}\right)=\log _{a} x_{1}-\log _{a} x_{2}=\frac{-1+\sqrt{21}}{2}-\frac{-1-\sqrt{21}}{2} \\ &=\sqrt{21} \end{aligned}$ $\begin{aligned} \text { LHS } & =\log _{a} x(1+2+\ldots+n) \\ & =\log _{a} x\left(\frac{n(n+1)}{2}\right) \\ \text { RHS } & =\frac{\log _{a} x\left[\left(\log _{a} x\right)^{n}-1\right]}{\log _{a} x-1} \end{aligned}$ Equate: $\log _{a} x\left(\frac{n(n+1)}{2}\right)=\frac{\log _{a} x\left[\left(\log _{a} x\right)^{n}-1\right]}{\log _{a} x-1}$ $\log _{a} x[n(n+1)]-\left(n^{2}+n\right)=2\left(\log _{a} x\right)^{n}-2$ leading to answer	M1 M1 A1 (3)	Use of the power rule to form an equation Attempt root to get an expression for \log
(b) (i)		M1 M1 A1	Use $n=3$ to get either Attempt to solve relevant quadratic.
(b)(ii)		M1 A1 (5)	Use $\log x-\log y$ rule and attempt to sub values for x
(c)		M1 A1	Attempt to use power rule on all of LHS
		M1 A1	Identify and attempt sum of GP
		dM1 A1 (6) [14]	Equate and attempt to simplify to given answer. Dep on bothMs cso

Qu	Scheme	Mark	Notes
6. (a)	$P(-a, 0) \quad Q(b, 0)$	B1B1 (2)	Allow B1B0 for ($0,-a$) etc
(b)	$I=\int(x+a) \mathrm{d}\left[\frac{(x-b)^{3}}{3}\right],=\left[(x+a) \frac{(x-b)^{3}}{3}\right]_{-a}^{b}-\int \frac{(x-b)^{3}}{3} \mathrm{~d} x$	$\begin{array}{\|l\|} \mathrm{M} 1, \\ \mathrm{~A} 1-\mathrm{A} 1 \end{array}$	M1 for correct attempt by parts
	$=0,-\left[\frac{(x-b)^{4}}{12}\right]_{-a}^{b}=(0)--\frac{(-a-b)^{4}}{12}=\frac{(a+b)^{4}}{12}$	B1, M1 A1cso (6)	M1 for second stage integration
(c)	$y^{\prime}=(x-b)^{2}+(x+a) 2(x-b)$	M1	Some correct diff'n
	$y^{\prime}=0 \Rightarrow 0=(x-b)[x-b+2 x+2 a]$	M1	Attempt to solve $y^{\prime}=0$
	$x=\frac{b-2 a}{3}$	A1	
	y co-ord of S is: $y_{S}=\frac{(a+b)}{3}\left(\frac{-2 a-2 b}{3}\right)^{2}=\frac{4}{27}(a+b)^{3}$	dM1	Sub to get y co-ord of S Dep on $2^{\text {nd }}$ M1
	Area of PQRST $=y_{S} \times(a+b),=\frac{4}{27}(a+b)^{4}$	dM1A1	M1 using correct formula Dep on $3^{\text {rd }}$ M1
	$\text { Ratio }=\frac{\frac{(a+b)^{4}}{12}}{\frac{4}{27}(a+b)^{4}},=\frac{27}{48}=\frac{9}{16}$	$\begin{array}{r} \mathrm{dM} 1, \mathrm{~A} 1 \\ (\mathbf{8}) \end{array}$	M1 dep on $2^{\text {nd }}$ and $3^{\text {rd }}$ M1. Must eliminate $(a+b)^{4}$
		[16]	
ALT (b)	Expand		
	$I=\int\left(x^{3}+a x^{2}-2 b x^{2}-2 a b x+b^{2} x+a b^{2}\right) \mathrm{d} x$	M1A1	M1 for 6 terms (3 corr) A1 for all correct
	$=\left(\frac{b^{4}}{12}+\frac{4 a b^{3}}{12}\right)-\left(-\frac{a^{4}}{12}-\frac{4 a^{3} b}{12}-\frac{6 a^{2} b^{2}}{12}\right) \rightarrow \text { answer }$	M1B1 A1 A1cso	M1 some integration B1 some use of $b \&-a$ A1 one bracket correct

Awarding of S and T marks		
Questions	Marks	For a fully correct solution that is succinct or includes an S+ point
$2,3,4$	S1	(
		For a fully correct solution that is succinct and includes some S+ points
$5,6,7$	S2	For a fully correct solution that is succinct but does not mention any S+ points
$5,6,7$	S1	For a fully correct solution that is slightly laboured but includes an S+ point
$5,6,7$	S1	For a score of $n-1$ but solution is otherwise succinct or contains an S+ point
$5,6,7$	S1	For a score of $n-2$ but solution is otherwise succinct and includes an S+ point
6	S1	Maximum S score is 6
ALL	T1	For at least half marks on all questions

Qu	Scheme	Mark	Notes
7.(a)	Max of $\cos u$ is 1 when $u=0, u=\cos x=0$ when $x=\frac{\pi}{2}$ or $\frac{3 \pi}{2}$ $\begin{array}{rr} P\left(\frac{\pi}{2}, 1\right) \quad R\left(\frac{3 \pi}{2}, 1\right) & {[\text { Require } 1 \text { not } \cos (0)]} \\ \cos (-1)=\cos (1) \text { so } \quad Q(\pi, \cos 1) & {[\text { Accept } \cos (-1)]} \end{array}$	M1 A1A1 B1 (4)	Method to get at least one of these values Implied by correct P or R Condone degrees in any part
(b)	**	B1	Shape (one -ve min)
		B1	$\sin 1$ seen at ends and $\cos 1<\sin 1<1$
	$\xrightarrow{\sim 2}$ - \sim_{3} Accept points NOT	B1,B1	$\frac{\pi}{2}, \frac{3 \pi}{2}$
	marked on graph	B1 (5)	$(\pi, \sin (-1))$
(c)	$\cos (\cos x)=\sin (\cos x) \Rightarrow 1=\tan (\cos x)$	M1	Use of $\sin / \mathrm{cos}=\tan$
	$\cos x=\frac{\pi}{4}\left(\text { or } \frac{5 \pi}{4}\right) \text { so } x=\alpha=\arccos \left(\frac{\pi}{4}\right)$	A1cso (2)	Allow verify but needs a comment " so $\alpha=$..."
(d)	$d=\cos (\cos \alpha)=\cos \left(\frac{\pi}{4}\right)$	M1	
	$S\left(\arccos \left(\frac{\pi}{4}\right), \frac{1}{\sqrt{2}}\right) \quad \text { Accept } d=\frac{1}{\sqrt{2}} \text { (o.e.) }$	A1	
	$T\left(2 \pi-\arccos \left(\frac{\pi}{4}\right), \frac{1}{\sqrt{2}}\right)$	B1ft (3)	ft their y co-ord of S
(e)	$y^{\prime}=\sin (\cos x) \sin x$	M1A1	M1 for attempt at chain rule
	$m=\sin \left(\frac{\pi}{4}\right) \sin \alpha$	M1	Substitution attempt
	$m=\frac{1}{\sqrt{2}} \times \frac{\sqrt{16-\pi^{2}}}{4}$	M1	Attempt $\sin \alpha$ in π
	$m=\sqrt{\frac{16-\pi^{2}}{32}} \text { so } \beta=\arctan \left(\sqrt{\frac{16-\pi^{2}}{32}}\right)$	A1cso (5)	
(f)	For $C_{2}: y^{\prime}=-\cos (\cos x) \sin x$	M1	Attempt y^{\prime}
	$m^{\prime}=-\cos \left(\frac{\pi}{4}\right) \sin \alpha, \quad=-\tan \beta \quad \text { (o.e.) e.g. } \quad-\sqrt{\frac{16-\pi^{2}}{32}}$	M1A1	M1 for sub of α
		M1	Attempt to find angle between two tangents to get 2β or $\pi-2 \beta$
	Obtuse angle is $\pi-2 \beta$	A1 (5)	Allow 180-2 β
	$\left[\tan \beta=\sqrt{\frac{16-\pi^{2}}{32}}<1 \Rightarrow \beta<\frac{\pi}{4}\right.$ so 2β is acute for $\left.\mathrm{S}+\right]$	[24]	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA032642 Summer 2012

Llywodraeth Cynulliad Cymru Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

