Mark Scheme (Results) Summer 2010

AEA

AEA Mathematics (9801)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

Summer 2010
Publications Code UA024466
All the material in this publication is copyright
© Edexcel Ltd 2010

Q.	Scheme	Marks	Notes
1(a)	$3 x+16=9+x+1+6 \sqrt{x+1}$	M1	Initial squaring -both sides
	$3+x=3 \sqrt{x+1}$	A1	Correct collecting of terms
	$9+6 x+x^{2}=9(x+1) \quad \text { or } y=\sqrt{x+1} \rightarrow 3 \mathrm{TQ} \text { in } y$	M1	$2^{\text {nd }} \text { squaring }$ o.e.
	$x^{2}-3 x=0 \quad$ or $(y-2)(y-1)=0$	A1 B1 (5)	Both values
	$\underline{x}=0$ or 3	B1 (5)	(S+ for checking values)
(b)	$\frac{1}{2} \log _{3} x=\log _{3} \sqrt{x}$	B1	For use of $n \log x$ rule
	$\log _{3}(x-7)-\log _{3} \sqrt{x}=\log _{3} \frac{x-7}{\sqrt{x}}$	M1	For reducing $x s$ to a single \log M1 for getting out of logs A1 for correct equation
	So $2 x-14=3 \sqrt{x}$ (o.e. all x terms on same line)	M1A1	A1 for correct equation Attempt to solve suitable
	$2(\sqrt{x})-3 \sqrt{x}-14=0$	M1	$\text { 3TQ in } x \text { or } \sqrt{x}$
	$(2 \sqrt{x}-7)(\sqrt{x}+2)=0$		Either solution for \sqrt{x} or
	$\sqrt{x}=\frac{7}{2} \text { or }-2$	A1	x. Must be rational a / b
	2		49/4 oe only
	$x=\frac{49}{4}$	A1 (7)	(S+ for clear reason for rejecting $x=4$)
		[12]	

Q.	Scheme	Marks	Notes
2(a)	$\begin{aligned} & q=\frac{p}{2}(2 a+(p-1) d) \text { and } p=\frac{q}{2}(2 a+(q-1) d) \\ & 2\left(\frac{q}{p}-\frac{p}{q}\right)=d(p-1-q+1) \\ & \quad d=\frac{2\left(q^{2}-p^{2}\right)}{p q(p-q)} ; \quad d=\frac{-2(p+q)}{p q} \\ & 2 a=\frac{2 q}{p}+\frac{(p-1) 2(q+p)}{p q} ; \quad a=\frac{q^{2}(q-1)-p^{2}(p-1)}{p q(q-p)} \\ & \frac{q^{2}+q p+p^{2}-p-q}{p q} \text { or } \frac{q^{2}+(p-1)(q+p)}{p q} \text { or } \frac{p^{2}+(q-1)(q+p)}{p q} \\ & S_{p+q}=\frac{p+q}{2}\left(\frac{2 q}{p}+\frac{(p-1) 2(q+p)}{p q}+\frac{-2(p+q)}{p q}(p+q-1)\right) \\ & =\frac{p+q}{2}\left[\frac{2\left(q^{2}+q p+p^{2}-p-q\right)}{p q}-\frac{2(p+q-1)(p+q)}{p q}\right] \\ & \frac{p+q}{p q}[-p q]=-[p+q] \end{aligned}$	A1 (5) M1 dM1 A1 (3) M1 M1 A1 (3) [11]	Attempt one sum formula Both correct expressions Eliminate a. Dep on $1^{\text {st }}$ M1 Must use 2 indep. eqns Correct elimination of a Correct simplified $d=$ Substitute for d in a correct sum formula i.e. eqn in a only Rearrange to $a=$. Dep M1 Correct single fraction with denom $=p q$ Attempt sum formula with $n=(p+q)$ and ft their a and d Attempt to simplify- denominator $=p q$ or $2 p q$ A1for - $(p+q)$ ($\mathrm{S}+$ for concise simplification/factorising)
Marks For a full T1 For a go Pick be	or Style Clarity and Presentation (up to max of 7) ly correct (or nearly fully correct) solution that is neat and succinct in d attempt at the whole paper. Progress in all questions. 3 S1/S2 scores to form total.	stion	question

\begin{tabular}{|c|c|c|c|}
\hline Q. \& Scheme \& Marks \& Notes

\hline 5(a)

(b) \& | $\begin{align*} & x=1+u^{-1} \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} u}=-\frac{1}{u^{2}} \\ & \therefore I=\int \frac{1}{u^{-1} \sqrt{u^{-2}+2 u^{-1}}} \cdot\left(-\frac{1}{u^{2}}\right) \mathrm{d} u \\ & I \tag{o.e} \end{align*}=-\int \frac{\mathrm{d} u}{\sqrt{1+2 u}} \quad(\text { (o.e) })$ |
| :--- |
| Uses $u=\frac{1}{x-1}$ to give $I=-\left(1+\frac{2}{x-1}\right)^{\frac{1}{2}}+c, I=-\left(\frac{x+1}{x-1}\right)^{\frac{1}{2}}+c$ $\begin{align*} & =-\left(\frac{\sec \beta+1}{\sec \beta-1}\right)^{\frac{1}{2}}+\left(\frac{\sec \alpha+1}{\sec \alpha-1}\right)^{\frac{1}{2}} \\ & =-\left(\frac{1+\cos \beta}{1-\cos \beta}\right)^{\frac{1}{2}}+\left(\frac{1+\cos \alpha}{1-\cos \alpha}\right)^{\frac{1}{2}} \\ & =-\left(\frac{2 \cos ^{2}\left(\frac{\beta}{2}\right)}{2 \sin ^{2}\left(\frac{\beta}{2}\right)}\right)^{\frac{1}{2}}+\left(\frac{2 \cos ^{2}\left(\frac{\alpha}{2}\right)}{2 \sin ^{2}\left(\frac{\alpha}{2}\right)}\right)^{\frac{1}{2}} \quad \text { ["2" is needed] } \\ & =\cot \left(\frac{\alpha}{2}\right)-\cot \left(\frac{\beta}{2}\right) \quad \text { (*) } \end{align*}$ | \& B1

M1
A1
M1
A1
M1
A1cso
(7)
M1
M1
M1
M1
A1cso
(5) [12]

B1 \& | Correct $\mathrm{d} x / \mathrm{d} u$ (o.e.) |
| :--- |
| Attempt to get I in u only |
| Correct simplified expression in u only |
| Attempt to int' their I Correct integration |
| Sub back in $x s$ |
| Including $+c$ |
| Use of part (a) |
| Multiply by $\cos x$ |
| Use of half angle formulae |
| Correct removal of $\sqrt{ }$. |

\hline 6(a)

(b)

(c) \& \begin{tabular}{l}
$$
\begin{aligned}
& A=x^{2}+y^{2}=x^{2}+\left(1-x^{4}\right)^{\frac{1}{2}} \\
& \therefore \frac{\mathrm{~d} A}{\mathrm{~d} x}=2 x-\left(2 x^{3}\right)\left(1-x^{4}\right)^{-\frac{1}{2}} \\
& \frac{\mathrm{~d} A}{\mathrm{~d} x}=0, \quad x=0 \text { or } x^{2}=\left(1-x^{4}\right)^{\frac{1}{2}}
\end{aligned}
$$

i.e. $x^{2}=y^{2} \Rightarrow x= \pm y$; and $x^{4}=y^{4}=\frac{1}{2}$, so $x^{2}+y^{2}=\sqrt{2}$

So minimum is 1 [and maximum is $\sqrt{2}$]
$$
x^{2}+y^{2}=\sqrt{2}
$$

 \&

A1

B1

M1; B1

B1 (7)

B1

B1

B1 (3)

[10]

 \&

A as function of x only

For some correct diff'n. More than just $2 x$

For $x^{2}=\left(1-x^{4}\right)^{\frac{1}{2}}$

For $x=0[\Rightarrow$ by min $=1]$

M1 for reaching $y= \pm x$

B1 for $\max =\sqrt{2}$

For $\min =1$

Circle, centre $(0,0) r=1$

Other curve

(S+ for some explanation
\end{tabular}

\hline ALT(a)

OR

OR \& | Let $x=r \cos \theta$ and $y=r \sin \theta$ then $r^{4}\left(\cos ^{4} \theta+\sin ^{4} \theta\right)=1$ $r^{4}=\frac{1}{\cos ^{4} \theta+\sin ^{4} \theta}=\frac{1}{1-\frac{1}{2} \sin ^{2} 2 \theta} ; \text { So } 1<r^{2}<2$ |
| :--- |
| Max value when $\theta=\frac{\pi}{4}$ so $x=y$ $\begin{aligned} & A^{2}=\left(x^{2}+y^{2}\right)^{2}=1+2 x^{2} y^{2}=1+2 x^{2} \sqrt{\left(1-x^{4}\right)} \\ & A^{2}-1=2 x^{2} y^{2} \rightarrow\left(A^{2}-1\right)^{2}=4 x^{4}\left(1-x^{4}\right) ;=4\left(\frac{1}{4}-\left(\frac{1}{2}-x^{4}\right)^{2}\right) \end{aligned}$ | \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { M1A1; } \\
& \text { B1B1 } \\
& \text { M1A1 } \\
& 1^{\text {st }} \mathrm{B} 1 \\
& \text { B1:M1A1 }
\end{aligned}
$$

\] \& | Then differentiate as before |
| :--- |
| By completing the square |

\hline
\end{tabular}

Q.	Scheme	Marks	Notes
7(a)	$\begin{align*} & \mathrm{f}(x)=\left[1+\left(\cos x \cos \frac{\pi}{4}-\sin x \sin \frac{\pi}{4}\right)\right]\left[1+\left(\sin x \cos \frac{\pi}{4}+\cos x \sin \frac{\pi}{4}\right)\right] \\ &\left.=\left[1+\frac{1}{\sqrt{2}} \cos x-\frac{1}{\sqrt{2}} \sin x\right)\right]\left[1+\frac{1}{\sqrt{2}} \sin x+\frac{1}{\sqrt{2}} \cos x\right] \\ &=\left(1+\frac{1}{\sqrt{2}} \cos x\right)^{2}-\left(\frac{1}{\sqrt{2}} \sin x\right)^{2} \text { or }=1+\frac{2}{\sqrt{2}} \cos x+\frac{1}{2} \cos ^{2} x-\frac{1}{2} \sin ^{2} x \\ &=1+\frac{2}{\sqrt{2}} \cos x+\frac{1}{2} \cos ^{2} x-\frac{1}{2}\left(1-\cos ^{2} x\right) \\ & \text { So } \mathrm{f}(x) \quad=\frac{1}{2}+\frac{2}{\sqrt{2}} \cos x+\cos ^{2} x \quad=\left(\frac{1}{\sqrt{2}}+\cos x\right)^{2} \quad(*) \tag{*} \end{align*}$	M1 B1 M1 M1 A1cso	Use of $\sin (A \pm B)$ etc $\sin \frac{\pi}{4}=\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}$ Multiply out and remove $\sin x \cos x$ terms Eqn in $\cos x$ only
(b)	Range: $0 \leq \mathrm{f}(x) \leq\left(\frac{1}{\sqrt{2}}+1\right)^{2}$ or equivalent e.g. $\frac{3}{2}+\frac{2}{\sqrt{2}}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	M1 $\mathrm{f} \geq 0$ or $\mathrm{f} \leq\left(\frac{1}{\sqrt{2}}+1\right)^{2}$ A1 both [M1A0 for <]
(c)	$\cos x=1$ gives maxima at $\left(0, \frac{3}{2}+\sqrt{2}\right)$ and at $\left(2 \pi, \frac{3}{2}+\sqrt{2}\right)$	B1 B1ft	If y co-ord is wrong allow $2^{\text {nd }} \mathrm{B} 1 \mathrm{ft}$
	Minima when $\left(\frac{1}{\sqrt{2}}+\cos x\right)=0 \Rightarrow \cos x=-\frac{1}{\sqrt{2}}$ so at $x=\frac{3 \pi}{4}$ or $\frac{5 \pi}{4}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	M1 for $y=0$ at $\cos x=$ A1 for x co-ords
	$\mathrm{f}^{\prime}(x)=-2 \sin x\left(\frac{1}{\sqrt{2}}+\cos x\right)=0 \text { at } x=\pi,$ so at $\left(\pi, \frac{3}{2}-\sqrt{2}\right)$ there is a (local) maximum	$\begin{aligned} & \text { M1 } \\ & \text { A1 (6) } \end{aligned}$	For $\mathrm{f}^{\prime}(x)=0$ and $x=\pi$ A1for max point
(d)	$\begin{aligned} & y=2 \text { meets } y=\mathrm{f}(x) \text { so }\left(\frac{1}{\sqrt{2}}+\cos x\right)^{2}=2 \Rightarrow \cos x=\frac{\sqrt{2}}{2} \\ & \therefore x=\frac{\pi}{4} \text { or } \frac{7 \pi}{4} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Form and solve correct eqn Both
	Area $=\int(2-\mathrm{f}(x)) \mathrm{d} x$ [or correct rect - integral o.e.]	M1	Correct strategy
	$\begin{aligned} & =\int\left(1-\sqrt{2} \cos x-\frac{1}{2} \cos 2 x\right) \mathrm{d} x \\ & =\left[x-\sqrt{2} \sin x-\frac{1}{4} \sin 2 x\right] \end{aligned}$	M1 dM1A1	All terms of integral in suitable form M1 for some correct int' Dep on previous M A1 for all correct
	$=\left(\frac{7 \pi}{4}+\sqrt{2} \times \frac{1}{\sqrt{2}}+\frac{1}{4} \times 1\right)-\left(\frac{\pi}{4}-\sqrt{2} \times \frac{1}{\sqrt{2}}-\frac{1}{4}\right)$	dM1	Use of their correct limits. Dep on $1^{\text {st }}$ M1
	$=\frac{1}{2}+\frac{-}{2}$	$\begin{aligned} & \text { A1 (8) } \\ & \text { [21] } \end{aligned}$	NB Rectangle $=3 \pi$
ALT	$\text { (a) } \begin{aligned} \mathrm{f}(x) & =1+\sqrt{2} \cos \left(x+\frac{\pi}{4}-\frac{\pi}{4}\right)+\frac{1}{2} \sin \left(2 x+\frac{\pi}{2}\right) \\ & =1+\sqrt{2} \cos x+\frac{1}{2} \cos 2 x \\ & =1+\sqrt{2} \cos x-\frac{1}{2}+\cos ^{2} x \end{aligned}$	$\begin{aligned} & 1^{\text {st }} \mathrm{M} 1 \mathrm{~B} 1 \\ & 2^{\text {nd }} \mathrm{M} 1 \\ & 3^{\text {rd }} \mathrm{M} 1 \end{aligned}$	Remove $\sin \left(2 x+\frac{\pi}{2}\right)$ Then as in scheme
ALT	$\text { (d) } \begin{aligned} \int\left(\frac{1}{\sqrt{2}}+\cos x\right)^{2} \mathrm{~d} x & =\int \frac{1}{2}+\sqrt{2} \cos x+\frac{1}{2}+\frac{1}{2} \cos 2 x \mathrm{~d} x \\ & =\frac{1}{2} x+\sqrt{2} \sin x+\frac{1}{4} \sin 2 x+\frac{1}{2} x \end{aligned}$	$\begin{aligned} & 3^{\text {rd }} \mathrm{M} 1 \\ & 4^{\text {th }} \mathrm{M} 1 \\ & 2^{\text {nd }} \mathrm{A} 1 \end{aligned}$	All terms in form to int' Will score $2^{\text {nd }} \mathrm{M} 1$ when they try to subtract from area of rectangle

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481

Email publications@linneydirect.com
Order Code UA024466 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

