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Q. Scheme Marks Notes 
1(a) 

 
 
 
 
 
 
 

(b) 

3 16 9 1 6 1x x x+ = + + + +  
    3 3 1x x+ = +                                (o.e.) 
 

29 6 9( 1)x x x+ + = +          or  1y x= + → 3TQ in y 
2 3 0x x− =                          or   ( )( )2 1 0y y− − =  

          x = 0 or 3 
 
1

3 32 log logx x=  

3log ( 7)x − − 3 3
7log log xx

x
−

=  

So     2 14 3x x− =                (o.e. all x terms on same line) 

( )
( )( )

2
2 3 14 0

2 7 2 0

x x

x x

− − =

− + =
 

                        7  or 2
2

x = −  

                            49
4

x =  

M1 
 
A1 
 
M1 
A1 
B1  (5) 
 
B1 
 
M1 
 
 
M1A1 

 
M1 
 
 
 
A1 
 
A1 (7) 
 
[12] 

Initial squaring -both sides 
 
Correct collecting of terms 
 
2nd squaring 
o.e. 
Both values 
(S+ for checking values) 
 
For use of  nlogx rule 
 
For reducing xs to a single log 
 
M1 for getting out of logs 
A1 for correct equation 
 
Attempt to solve suitable 
3TQ in x or x  
 
Either solution for  x or 
x.  Must be rational a/b 
 
49/4 oe only 
(S+ for clear reason for 
rejecting  x = 4) 
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Q. Scheme Marks Notes 
2(a) 

 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 

(c) 

2 (2 ( 1) )pq a p d= + −   and 2 (2 ( 1) )qp a q d= + −  

 

( )2 1 1q p d p q
p q

⎛ ⎞
− = − − +⎜ ⎟

⎝ ⎠
 

             
2 22( )
( )

q pd
pq p q

−
=

−
;       2( )p qd

pq
− +

=  

 
2 ( 1)2( )2 q p q pa
p pq

− +
= + ;       

2 2( 1) ( 1)
( )

q q p pa
pq q p
− − −

=
−

 

2 2q qp p p q
pq

+ + − − or
2 ( 1)( )q p q p

pq
+ − + or

2 ( 1)( )p q q p
pq

+ − +

 
2 ( 1)2( ) 2( ) ( 1)

2p q
p q q p q p p qS p q

p pq pq+

⎛ ⎞+ − + − +
= + + + −⎜ ⎟

⎝ ⎠
 

2 2

2
2( ) 2( 1)( )p q q qp p p q p q p q

pq pq
+ ⎡ ⎤+ + − − + − +

= −⎢ ⎥
⎣ ⎦

 

[ ]p q pq
pq
+

−  = - [ p + q ] 

M1 
A1 
 
dM1 
 
A1 
 
A1  (5) 
 
 
 
M1 
 
dM1 
 
A1  (3) 
 
 
M1  
 
 
M1 
 
A1  (3) 
[11] 

Attempt one sum formula 
Both correct expressions 
 
Eliminate a. Dep on 1st M1 
Must use 2 indep. eqns 
Correct elimination of a  
 
Correct simplified d =  
 
Substitute for d in a correct 
sum formula i.e. eqn in a 
only 
 
Rearrange to a = . Dep M1 
 
Correct single fraction 
with denom = pq 
 
Attempt sum formula with 
n = (p+q) and ft their a 
and d 
 
Attempt to simplify- 
denominator = pq or 2pq 
 
A1for -(p+q) 
(S+ for concise 
simplification/factorising) 

Marks for Style Clarity and Presentation (up to max of 7) 
S1 or S2 
For a fully correct (or nearly fully correct) solution that is neat and succinct in question 1 to question 7 
T1 
For a good attempt at the whole paper. Progress in all questions. 
Pick best 3 S1/S2 scores to form total. 
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Q. Scheme Marks Notes 
3(a) 

 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 

(c) 

 
2 2 0x yy fy fxy′ ′+ + + =  
 

2
[2 ]

x fyy
y fx
+′∴ =

− +
 

At ( , )α β  gradient, m = 2
[2 ]

f
f

α β
β α
+

− +
 (o.e.) 

 

m = 1 gives:   2 2f fα β β α+ = − −  
( )( )( 2) 0   or 2f fα β α β∴ + + = ⇒ = − = −        (*) 

 
From curve:  2 2 2 2 0f gα α α+ − − =   (o.e.) 

2
2 2 2(2 ) and so (or )=

2 2
g gf g

f f
α α α β ±

∴ − = ⇒ =
− −

 (*) 

 
( )2 2x y g− =        or  x y g− = ±  
                        
                         Line y x g= +  sketched  
                         Line y x g= −  sketched 

 
M1 
 
A1 
 
dM1 
 
A1 (4) 
 
M1 
 
A1cso 
 
M1 
 
A1cso 
(4) 
 
M1 
 
 
A1 
A1 (3) 
[11] 

Correct attempt to diff’n 
2  or y xy  

All fully correct and = 0 
 
Isolate y '  Dep on 1st M1 
 
Sub α and β 
 
 
Sub m = 1 and form linear 
equation in α and β. 
 
(S+ for using f 2≠ − ) 
 
Sub (α = −β)into equation 
of curve 
 
Simplify to answer. 
(S+ for considering f < 2) 
 
Attempt to complete the 
square, allow + 
Or shows m = 1 
 
Sketches should show y 
intercept or eq’n at least. 

4(a) 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 

5 0
10 , 10 ;    125, 500
0 20

AC AF AC AF
−⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟= = = =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

uuur uuur uuur uuur
 

100 AC AF• = ⇒
uuur uuur

cos CAF∠ =
100

125 500
,= 2

5
or 0.4 

 

5 5 5 5
0 10 10
0 0 0

t
OX t t

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

uuur
 or  10 2

0

a
a

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎝ ⎠

;  
5

10 10
20

t
FX t

−⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

uuur
 

 
0  25 100 100 0 0FX AC t t• = ⇒ + − + =

uuur uuur
,        [ t = 0.8 ] 

1 4
8 ;   2  and 420
0 20

OX FX FX
−⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟= = − =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

uuur uuur uuur
 

[ 420FX =
uuur

 earns M1 M1 A1 ; OX
uuur

 earns M1M1A1A1] 
 

( ) ( )1 2

5 5 2.5
: 5  and  : 0 10

10 0 20
l lλ µ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

r r  

Solving: 5 5 2.5    and  5 10λ µ λ µ= − =  (o.e.) 
                                                                        0.8,   0.4λ µ= =  
Intersection at the point  (4, 4, 8) 

B1 
 
B1 
 
M1 
A1 (4) 
 
M1; 
 
M1 
 
 
M1 
 
A1 
A1 
M1 
A1  (7) 
 
 
 
B1 
B1 
 
M1 
 
A1 
A1 (5) 
[16] 

Vectors AC or AF.   
Condone  + 
 
correct mods 
 
Complete method for + 
cos(CAF) 
 
 
Attempt equation for AC 
or variable OX 
 
Attempt FX.  Must be in 
terms of one unknown 
 
Correct use of . to get 
linear eqn in t 
t = 0.8 o.e. 
Correct vector OX 
Attempt + FX 

420  o.e. 
 
 
 
 
B1 for each vector 
equation 
 
Clear attempt to solve 
leading to λ = or µ = 
 Either 
Accept position vector 
 
(S+ for clear attempt to 
check intersection) 
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Q. Scheme Marks Notes 
5(a) 

 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

1
2

d 11
d

xx u
u u

−= + ⇒ = −  

21 2 1

1 1. d
2

I u
uu u u− − −

⎛ ⎞∴ = −⎜ ⎟
⎝ ⎠+

⌠
⎮
⌡

 

   I = d
1 2

u
u

−
+

⌠
⎮
⌡

                    (o.e) 

     ( )1
2(1 2 )u c= − + +  

Uses 1
1

u
x

=
−

 to give I  
1
2

2(1 )
1

c
x

= − + +
−

 , 
1
21

1
xI
x

+⎛ ⎞= −⎜ ⎟−⎝ ⎠
+ c 

 
1 1
2 2sec 1 sec 1

sec 1 sec 1
β α
β α

⎛ ⎞+ +⎛ ⎞+⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠
= −  

1 12 21 cos 1 cos
1 cos 1 cos

β α
β α

⎛ ⎞+ +⎛ ⎞+⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠
= −  

= 
1
22

2
2

2

2cos ( )
2sin ( )

β

β

⎛ ⎞
−⎜ ⎟

⎝ ⎠
  

1
22

2
2

2

2cos ( )
2sin ( )

α

α

⎛ ⎞
+⎜ ⎟

⎝ ⎠
              [“2” is needed] 

=   cot cot
2 2
α β⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
                             (*) 

B1 
 
 
 
M1 
 
A1 
 
 
M1 

A1 
 
M1 
A1cso 
(7) 
 
M1 
 
M1 
 
 
M1 
 
M1 
A1cso 
(5)   [12] 

Correct dx/du (o.e.) 
 
 
 
Attempt to get I in u only 
 
 
Correct simplified 
expression in u only 
 
Attempt to int’ their I  
Correct integration 
 
Sub back in xs 
 
Including + c 
 
 
Use of part (a) 
 
 
Multiply by cosx 
 
 
Use of half angle 
formulae 
 
Correct removal of  . 

1
22 2 2 4(1 )A x y x x= + = + −  
1
23 4d 2 (2 )(1 )

d
A x x x
x

−∴ = − −  

1
22 4d 0,     0  or  (1 )

d
A x x x
x

= = = −  

2 2i.e.   x y x y= ⇒ = ± ; and 4 4 2 21
2 ,   so  2x y x y= = + =  

So minimum is 1 [and maximum is 2 ] 

x

y

1

 
2 2 2x y+ =  

 

B1 
 
M1 
 
A1 
B1 
M1; B1 
 
B1  (7) 
 
 
B1 
 
B1 
 
B1  (3) 
[10] 

A as function of x only 
 
For some correct diff’n. 
More than just 2x 

For 
1

2 4 2(1 )x x= −  
For x = 0[ ⇒ by min = 1] 
M1 for reaching y = +x 
B1 for max = 2  
For min = 1 
 
 
 
Circle, centre (0,0) r =1 
 
Other curve  
 
 
(S+ for some explanation 

6(a) 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 

(c) 
 
 

ALT(a) 
 
 
 
 
 

OR 
 

OR 

Let x = rcosθ and y = rsinθ then 4 4 4(cos sin ) 1r θ θ+ =  
4

4 4

1
cos sin

r
θ θ

=
+

= 21
2

1
1 sin 2θ−

;  So 21 2r< <  

Max value when 4
πθ = so x = y 

2 2 2 2 2 2( ) 1 2A x y x y= + = + 2 41 2 (1 )x x= + −  
2 2 2 2 2 4 41 2 ( 1) 4 (1 )A x y A x x− = → − = − ; 4 21 1

4 24( ( ) )x= − −  

B1 
 
M1A1; 
B1B1 
M1A1 
1st B1 
 
B1:M1A1 

 
 
 
 
 
 
Then differentiate as 
before  
By completing the square 
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Q. Scheme Marks Notes 

4 4 4 4f ( ) [1 (cos cos sin sin )][1 (sin cos cos sin )]x x x x xπ π π π= + − + +
        1 1 1 1

2 2 2 2
[1 cos sin )][1 sin cos ]x x x x= + − + +  

2 21 1
2 2

(1 cos ) ( sin )x x= + −  or 2 22 1 1
2 22

1 cos cos sinx x x= + + −  
2 22 1 1

2 22
1 cos cos (1 cos )x x x= + + − −  

So f(x)      21 2
2 2

cos cosx x= + +    21
2

( cos )x= +   (*) 
 
Range:   0 f ( )x≤ ≤ 21

2
( 1)+  or equivalent e.g. 3 2

2 2
+  

 
3 3
2 2cos 1 gives maxima at (0, 2) and at (2 , 2)x π= + +  

 
Minima when 1

2
( cos ) 0x+ = 1

2
cos x⇒ = −  so at 3 5

4 4or x π π=  
 

1
2

f ( ) 2sin ( cos )x x x′ = − + = 0 at x π= , 

 so at 3
2( , 2)π − there is a (local) maximum 

 
y = 2 meets y = f(x) so 21

2
( cos )x+ =2 2

2cos x⇒ =  
7

4 4  or  x π π∴ =  

Area = (2 f ( )) dx x−∫   [or correct rect - integral o.e.] 

 

         = ( )1
21 2 cos cos 2  dx x x− −∫  

         =  1
42 sin sin 2x x x⎡ ⎤− −⎣ ⎦  

 

         = 7 1 1 1 12 1 2
4 4 4 42 2
π π⎛ ⎞ ⎛ ⎞+ × + × − − × −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

         = 3 5
2 2
π

+  

M1 
 
B1 
 
M1 
 
M1 
A1cso 
         (5) 
M1 
A1    (2) 
 
B1 B1ft 
 
 
M1 
A1 
 
M1 
A1 (6) 
 
 
 
M1 
A1 
 
M1 
 
M1 
 
dM1A1 
 
 
dM1 
 
 
A1  (8) 
[21] 

Use of sin(A+B) etc 
 

1sin cos4 4 2
π π= =  

Multiply out and 
remove sinxcosx terms 
 
Eqn in cosx only 
 
 
M1  f>0 or f< 21

2
( 1)+  

A1 both [M1A0 for <] 
 
If y co-ord is wrong 
allow 2nd B1ft 
 
M1 for y = 0 at cosx = 
A1 for x co-ords 
 
For f ' (x)=0 and x = π 
A1for max point 
 
 
 
Form and solve correct 
eqn 
Both 
 
Correct strategy 

 
All terms of integral in 
suitable form 
M1 for some correct 
int’ Dep on previous M 
A1 for all correct  
 
Use of their correct 
limits.  Dep on 1st M1 
 
NB Rectangle  = 3π 

(a) 1
4 4 2 2f ( ) 1 2 cos( ) sin(2 )x x xπ π π= + + − + +  

              = 1
21 2 cos cos 2x x+ +  

              = 21
21 2 cos cosx x+ − +  

1stM1B1 
 
2nd M1 
3rd M1 

 
 
Remove sin(2x + 2

π ) 
Then as in scheme 

7(a) 
 
 
 
 
 
 
 

(b) 
 
 

(c) 
 
 
 
 
 
 
 
 

(d) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ALT 
 
 
 
 

ALT 
 

 

(d) 21
2

( cos ) dx x+∫ = 1 1 1
2 2 22 cos cos 2  dx x x+ + +∫  

                                 =  1 1 1
2 4 22 sin sin 2x x x x+ + +  

3rd  M1 
 
4th M1 
2nd A1 

All terms in form to int’ 
 
 
 
Will score 2nd M1 when 
they try to subtract from 
area of rectangle 
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