

Mark Scheme (Results) Summer 2010

AEA

AEA Mathematics (9801)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Summer 2010 Publications Code UA024466 All the material in this publication is copyright © Edexcel Ltd 2010

June 2010 9801 Advanced Extension Award Mathematics Mark Scheme

Q.	Scheme	Marks	Notes
1(a)	$3x + 16 = 9 + x + 1 + 6\sqrt{x+1}$	M1	Initial squaring -both sides
	$3 + x = 3\sqrt{x+1} \tag{o.e.}$	A1	Correct collecting of terms
	$9+6x+x^{2} = 9(x+1) \qquad \underline{\text{or}} y = \sqrt{x+1} \rightarrow 3\text{TQ in } y$ $x^{2}-3x = 0 \qquad \underline{\text{or}} (y-2)(y-1) = 0$ $x = 0 \text{ or } 3$	M1 A1 B1 (5)	2 nd squaring o.e. Both values (S+ for checking values)
(b)	$\frac{1}{2}\log_3 x = \log_3 \sqrt{x}$	B1	For use of <i>n</i> log <i>x</i> rule
	$\log_3(x-7) - \log_3\sqrt{x} = \log_3\frac{x-7}{\sqrt{x}}$	M1	For reducing <i>xs</i> to a single log M1 for setting out of logs
	So $2x-14 = 3\sqrt{x}$ (o.e. all x terms on same line)	M1A1	A1 for correct equation
	$2\left(\sqrt{x}\right)^2 - 3\sqrt{x} - 14 = 0$	M1	Attempt to solve suitable 3TQ in x or \sqrt{x}
	$\left(2\sqrt{x}-7\right)\left(\sqrt{x}+2\right)=0$		Either solution for \sqrt{x} or
	$\sqrt{x} = \frac{7}{2}$ or -2	A1	x. Must be rational a/b
	$x = \frac{49}{4}$	A1 (7)	49/4 oe only (S+ for clear reason for rejecting $x = 4$)
	<u></u>	[12]	

Q.	Scheme	Marks	Notes
2(a)	$q = \frac{p}{2}(2a + (p-1)d)$ and $p = \frac{q}{2}(2a + (q-1)d)$	M1 A1	Attempt one sum formula Both correct expressions
	$2\left(\frac{q}{p}-\frac{p}{q}\right) = d\left(p-1-q+1\right)$	dM1	Eliminate <i>a</i> . Dep on 1 st M1 Must use 2 indep. eqns
	(P - 1) = $2(q^2 - p^2)$ = $-2(p+q)$	A1	Correct elimination of <i>a</i>
	$d = \frac{-(q - p)}{pq(p - q)}; \qquad d = \frac{-(p + q)}{pq}$	A1 (5)	Correct simplified $d =$
(b)	$2a = \frac{2q}{n} + \frac{(p-1)2(q+p)}{n}; \qquad a = \frac{q^2(q-1) - p^2(p-1)}{nq(q-p)};$	M1	Substitute for <i>d</i> in a correct sum formula i.e. eqn in <i>a</i> only
	$p \qquad pq \qquad pq(q-p)$ $a^{2} + ap + p^{2} - p - a \qquad a^{2} + (p-1)(a+p) \qquad p^{2} + (a-1)(a+p)$	dM1	Rearrange to $a = .$ Dep M1
	$\frac{q + qp + p - p - q}{pq} \text{ or } \frac{q + (p - 1)(q + p)}{pq} \text{ or } \frac{p + (q - 1)(q + p)}{pq}$	A1 (3)	Correct single fraction with denom $= pq$
(c)	$S_{p+q} = \frac{p+q}{2} \left(\frac{2q}{p} + \frac{(p-1)2(q+p)}{pq} + \frac{-2(p+q)}{pq}(p+q-1) \right)$	M1	Attempt sum formula with $n = (p+q)$ and ft their a and d
	$=\frac{p+q}{2}\left[\frac{2(q^{2}+qp+p^{2}-p-q)}{pq}-\frac{2(p+q-1)(p+q)}{pq}\right]$	M1	Attempt to simplify- denominator = pq or $2pq$
	$\frac{p+q}{pq}\left[-pq\right] = -\left[p+q\right]$	A1 (3) [11]	Alfor -(<i>p</i> + <i>q</i>) (S+ for concise simplification/factorising)
Marks for Style Clarity and Presentation (up to max of 7)			
<u>S1 or S2</u>			
For a fully correct (or nearly fully correct) solution that is neat and succinct in question 1 to question 7			
<u>TI</u> Encoded a structure of the second and the second in all second in a			
For a good attempt at the whole paper. Progress in all questions.			

For a good attempt at the whole paper. Progress in all questi Pick best 3 S1/S2 scores to form total.

Q.	Scheme	Marks	Notes
3 (a)	2x + 2yy' + fy + fxy' = 0	M1	Correct attempt to diff'n v^2 or xv
		A1	All fully correct and $= 0$
	$\therefore y' = \frac{2x + fy}{-[2y + fx]}$	dM1	Isolate y' Dep on 1^{st} M1
	At (α, β) gradient, $m = \frac{2\alpha + f\beta}{-[2\beta + f\alpha]}$ (o.e.)	A1 (4)	Sub α and β
(b)	$m = 1$ gives: $2\alpha + f\beta = -2\beta - f\alpha$	M1	Sub $m = 1$ and form linear equation in α and β .
	$\therefore (\alpha + \beta)(f + 2) = 0 \Longrightarrow \alpha = -\beta (\text{or } f = -2) \qquad (*)$	A1cso	$(S+ \text{ for using } f \neq -2)$
	From curve: $\alpha^2 + \alpha^2 - f\alpha^2 - g^2 = 0$ (o.e.)	M1	Sub $(\alpha = -\beta)$ into equation of curve
	$\therefore \alpha^2 (2-f) = g^2 \Longrightarrow \alpha^2 = \frac{g^2}{2-f} \text{ and so } \alpha(\text{ or } \beta) = \frac{\pm g}{\sqrt{2-f}} \text{ (*)}$	A1cso (4)	Simplify to answer. (S+ for considering $f < 2$)
(c)	$(x-y)^2 = g^2$ or $x-y = \pm g$	M1	Attempt to complete the square, allow \pm Or shows $m = 1$
	Line $y = x + g$ sketched	A1	Sketches should show y
	Line $y = x - g$ sketched	A1 (3)	intercept or eq'n at least.
4(a)	(-5) (0)	B1	Vectors AC or AF.
	$\overrightarrow{AC} = \begin{bmatrix} 10\\0 \end{bmatrix}, \overrightarrow{AF} = \begin{bmatrix} 10\\20 \end{bmatrix}; \left \overrightarrow{AC} \right = \sqrt{125}, \left \overrightarrow{AF} \right = \sqrt{500}$	B1	Condone \pm correct mods
	$\overrightarrow{AC} \bullet \overrightarrow{AF} = 100 \implies \cos \angle CAF = \frac{100}{\sqrt{125}\sqrt{500}}, = \frac{2}{5} \text{ or } 0.4$	M1 A1 (4)	Complete method for $\pm \cos(CAF)$
(b)	\overrightarrow{OV} $\begin{pmatrix} 5\\ 0 \end{pmatrix}$ $\begin{pmatrix} -5\\ 10 \end{pmatrix}$ $\begin{pmatrix} 5-5t\\ 10 \end{pmatrix}$ $\begin{pmatrix} a\\ 10 \end{pmatrix}$ \overrightarrow{VV} $\begin{pmatrix} -5t\\ 10 \end{pmatrix}$	M1;	Attempt equation for <i>AC</i> or variable <i>OX</i>
	$OX = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 10 \\ 0 \end{bmatrix} = \begin{bmatrix} 10t \\ 0 \end{bmatrix} \underbrace{\text{or}}_{0} \begin{bmatrix} 10-2a \\ 0 \end{bmatrix}; FX = \begin{bmatrix} 10t-10 \\ -20 \end{bmatrix}$	<u>M1</u>	Attempt FX. Must be in terms of <u>one</u> unknown
	$\overrightarrow{FX} \bullet \overrightarrow{AC} = 0 \implies 25t + 100t - 100 + 0 = 0, \qquad [t = 0.8]$	M1	Correct use of \cdot to get linear eqn in t
	$\overrightarrow{OX} = \begin{bmatrix} 1 \\ 8 \end{bmatrix}; \overrightarrow{FX} = \begin{bmatrix} -4 \\ -2 \end{bmatrix} \text{ and } \overrightarrow{FX} = \sqrt{420}$	A1 A1	t = 0.8 o.e. Correct vector OX
	$\begin{pmatrix} 0 \end{pmatrix}$ $\begin{pmatrix} -20 \end{pmatrix}$	$\frac{M1}{A1}$ (7)	Attempt $\pm FX$ $\sqrt{420}$ o.e.
	$\left \left \overline{FX}\right = \sqrt{420} \text{ earns } \underline{M1} \underline{M1} \underline{A1}; \overline{OX} \text{ earns } M1M1A1A1\right]$	(*)	
(c)	$\begin{pmatrix} 5 \\ -2.5 \end{pmatrix}$	B1	B1 for each vector
	$l_1: (\mathbf{r} =) \lambda \begin{vmatrix} 5 \\ 10 \end{vmatrix}$ and $l_2: (\mathbf{r} =) \begin{vmatrix} 0 \\ 0 \end{vmatrix} + \mu \begin{vmatrix} 10 \\ 20 \end{vmatrix}$	DI	Clean attainet to a lar
	(10) (0) $(20)Solving: 5\lambda = 5 - 2.5\mu and 5\lambda = 10\mu (0.8)$	M1	leading to $\lambda = \text{ or } \mu =$
	$\lambda = 0.8, \ \mu = 0.4$	A1	Either Accept position vector
	Intersection at the point $(4, 4, 8)$	A1 (5)	(S+ for clear attempt to
			check intersection)

AEA Mathematics (9801) Summer 2010

Q.	Scheme	Marks	Notes
5(a)	dx = 1 $dx = 1$	B1	Correct dx/du (o.e.)
	$x = 1 + u^{-1} \Longrightarrow \frac{1}{du} = -\frac{1}{u^2}$ $\therefore I = \int \frac{1}{u^{-1}\sqrt{u^{-2} + 2u^{-1}}} \cdot \left(-\frac{1}{u^2}\right) du$	M1	Attempt to get <i>I</i> in <i>u</i> only
	$I = -\int \frac{\mathrm{d}u}{\sqrt{1+2u}} \qquad (\text{o.e})$	A1	Correct simplified expression in <i>u</i> only
	$= -(1+2u)^{\frac{1}{2}}(+c)$	M1 A1	Attempt to int' their <i>I</i> Correct integration
	Uses $u = \frac{1}{x-1}$ to give $I = -(1 + \frac{2}{x-1})^{\frac{1}{2}} + c$, $I = -\left(\frac{x+1}{x-1}\right)^{\frac{2}{2}} + c$	M1	Sub back in <i>xs</i>
(h)	$\left(\sec\beta+1\right)^{\frac{1}{2}}$, $\left(\sec\alpha+1\right)^{\frac{1}{2}}$	(7)	Including $+ c$
	$= -\left(\frac{1}{\sec\beta - 1}\right) + \left(\frac{1}{\sec\alpha - 1}\right)$	M1	Use of part (a)
	$= -\left(\frac{1+\cos\beta}{1-\cos\beta}\right)^2 + \left(\frac{1+\cos\alpha}{1-\cos\alpha}\right)^2$	M1	Multiply by cosx
	$= -\left(\frac{2\cos^{2}(\frac{\beta}{2})}{2}\right)^{\frac{1}{2}} + \left(\frac{2\cos^{2}(\frac{\alpha}{2})}{2}\right)^{\frac{1}{2}} $ ["2" is needed]	M1	Use of half angle formulae
	$ \left(2\sin^2(\frac{\beta}{2}) \right) \left(2\sin^2(\frac{\alpha}{2}) \right) $ $ \operatorname{ext} \left(\frac{\alpha}{2} \right) \operatorname{ext} \left(\frac{\beta}{2} \right) $ $ (1)$	M1 A1cso	Correct removal of $$.
	$= \operatorname{cor}\left(\frac{1}{2}\right) - \operatorname{cor}\left(\frac{1}{2}\right)$ ()	(5) [12]	
6(a)	$A = r^{2} + v^{2} = r^{2} + (1 - r^{4})^{\frac{1}{2}}$	B1	A as function of x only
	$\therefore \frac{dA}{dx} = 2x - (2x^3)(1 - x^4)^{-\frac{1}{2}}$	M1	For some correct diff'n. More than just 2 <i>x</i>
	$\frac{dA}{dx} = 0$, $x = 0$ or $x^2 = (1 - x^4)^{\frac{1}{2}}$	A1 B1	For $x^2 = (1 - x^4)^{\frac{1}{2}}$ For $x = 0[\implies \text{by min} = 1]$
	i.e. $x^2 = y^2 \implies x = \pm y$; and $x^4 = y^4 = \frac{1}{2}$, so $x^2 + y^2 = \sqrt{2}$	M1; B1	M1 for reaching $y = \pm x$ B1 for max = $\sqrt{2}$
(b)	So minimum is 1 [and maximum is $\sqrt{2}$]	B1 (7)	For $\min = 1$
		B1	Circle centre $(0,0)$ $r=1$
		B1	Other curve $(0,0)$ $r = 1$
(c)		B1 (3)	
	$x^2 + y^2 = \sqrt{2}$	[10]	(S+ for some explanation
ALT(a)	Let $x = r\cos\theta$ and $y = r\sin\theta$ then $r^4(\cos^4\theta + \sin^4\theta) = 1$	B1	
	$r^4 = \frac{1}{\cos^4 \theta + \sin^4 \theta} = \frac{1}{1 - \frac{1}{2}\sin^2 2\theta}$; So $1 < r^2 < 2$	M1A1; B1B1	
	Max value when $\theta = \frac{\pi}{4}$ so $x = y$	M1A1	
OR	$A^{2} = (x^{2} + y^{2})^{2} = 1 + 2x^{2}y^{2} = 1 + 2x^{2}\sqrt{(1 - x^{4})}$	1 st B1	Then differentiate as before
OR	$A^{2} - 1 = 2x^{2}y^{2} \rightarrow (A^{2} - 1)^{2} = 4x^{4}(1 - x^{4}); = 4(\frac{1}{4} - (\frac{1}{2} - x^{4})^{2})$	B1:M1A1	By completing the square

Q.	Scheme	Marks	Notes
7 (a)	$f(x) = [1 + (\cos x \cos \frac{\pi}{4} - \sin x \sin \frac{\pi}{4})][1 + (\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4})]$	M1	Use of $sin(\underline{A+B})$ etc
	$= \left[1 + \frac{1}{\sqrt{2}}\cos x - \frac{1}{\sqrt{2}}\sin x\right] \left[1 + \frac{1}{\sqrt{2}}\sin x + \frac{1}{\sqrt{2}}\cos x\right]$	B1	$\sin\frac{\pi}{4} = \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}$
	$= (1 + \frac{1}{\sqrt{2}}\cos x)^2 - (\frac{1}{\sqrt{2}}\sin x)^2 \text{ or } = 1 + \frac{2}{\sqrt{2}}\cos x + \frac{1}{2}\cos^2 x - \frac{1}{2}\sin^2 x$	M 1	Multiply out and
	$=1+\frac{2}{\sqrt{2}}\cos x+\frac{1}{2}\cos^{2} x-\frac{1}{2}(1-\cos^{2} x)$	N/1	
	So f(x) $= \frac{1}{2} + \frac{2}{\sqrt{2}} \cos x + \cos^2 x = (\frac{1}{\sqrt{2}} + \cos x)^2$ (*)	MI Alcso	Eqn in cosx only
(b)	Range: $0 \le f(x) \le (\frac{1}{\sqrt{2}} + 1)^2$ or equivalent e.g. $\frac{3}{2} + \frac{2}{\sqrt{2}}$	(5) M1 A1 (2)	M1 f ≥ 0 or f $\le (\frac{1}{\sqrt{2}} + 1)^2$ A1 both [M1A0 for <]
(c)	$\cos x = 1$ gives maxima at $(0, \frac{3}{2} + \sqrt{2})$ and at $(2\pi, \frac{3}{2} + \sqrt{2})$	B1 B1ft	If <i>y</i> co-ord is wrong allow 2^{nd} B1ft
	Minima when $\left(\frac{1}{\sqrt{2}} + \cos x\right) = 0 \Longrightarrow \cos x = -\frac{1}{\sqrt{2}}$ so at $x = \frac{3\pi}{4}$ or $\frac{5\pi}{4}$	M1 A1	M1 for $y = 0$ at $\cos x =$ A1 for x co-ords
	$f'(x) = -2\sin x(\frac{1}{\sqrt{2}} + \cos x) = 0$ at $x = \pi$,	M1	For f'(x)=0 and $x = \pi$
	so at $(\pi, \frac{3}{2} - \sqrt{2})$ there is a (local) maximum	A1 (6)	Alfor max point
(d)	$y = 2$ meets $y = f(x)$ so $\left(\frac{1}{\sqrt{2}} + \cos x\right)^2 = 2 \implies \cos x = \frac{\sqrt{2}}{2}$ $\therefore x = \frac{\pi}{4}$ or $\frac{7\pi}{4}$	M1 A1	Form and solve correct eqn Both
	Area = $\int (2 - f(x)) dx$ [or correct rect - integral o.e.]	M1	Correct strategy
	$= \int \left(1 - \sqrt{2}\cos x - \frac{1}{2}\cos 2x\right) \mathrm{d}x$	M1	All terms of integral in suitable form
	$= \left[x - \sqrt{2} \sin x - \frac{1}{4} \sin 2x \right]$	dM1A1	M1 for some correct int' Dep on previous M A1 for all correct
	$= \left(\frac{7\pi}{4} + \sqrt{2} \times \frac{1}{\sqrt{2}} + \frac{1}{4} \times 1\right) - \left(\frac{\pi}{4} - \sqrt{2} \times \frac{1}{\sqrt{2}} - \frac{1}{4}\right)$	dM1	Use of their correct limits. Dep on 1 st M1
	$=\frac{3\pi}{2}+\frac{5}{2}$	A1 (8) [21]	NB Rectangle = 3π
ALT	(a) $f(x) = 1 + \sqrt{2}\cos(x + \frac{\pi}{4} - \frac{\pi}{4}) + \frac{1}{2}\sin(2x + \frac{\pi}{2})$	1 st M1B1	
	$= 1 + \sqrt{2}\cos x + \frac{1}{2}\cos 2x$	2^{nd} M1	Remove $\sin(2x + \frac{\pi}{2})$
	$= 1 + \sqrt{2} \cos x - \frac{1}{2} + \cos^2 x$	3^{rd} M1	Then as in scheme
ALT	(d) $\int (\frac{1}{\sqrt{2}} + \cos x)^2 dx = \int \frac{1}{2} + \sqrt{2} \cos x + \frac{1}{2} + \frac{1}{2} \cos 2x dx$	3 rd M1	All terms in form to int'
	$= \frac{1}{2}x + \sqrt{2}\sin x + \frac{1}{4}\sin 2x + \frac{1}{2}x$	$4^{\text{th}}M1$	
		2 ^{nu} A1	Will score 2 nd M1 when
			they try to subtract from area of rectangle

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA024466 Summer 2010

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH