Mark Scheme Summer 2009

AEA

AEA Mathematics (9801)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 08445760025 , our GCSE team on 08445760027 , or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

Summer 2009
Publications Code UA021532
All the material in this publication is copyright
© Edexcel Ltd 2009

Contents

1. AEA Mathematics Mark Scheme 5

J une 2009
 9801 Advanced Extension Award Mathematics
 Mark Scheme

Question Number	Scheme	Marks	Notes
Q1 (a) (b)	Con,-1,2,(0,2) $y=(x+1)(2-x)$ One intersection at $x=2$ Second at $\quad(x+1)(2-x)=x(x+2)$ $(0=) 2 x^{2}+x-2$ $x=\frac{-1 \pm \sqrt{1+16}}{4} \quad$, since root is in $(-2,-1) \quad x=\frac{-1-\sqrt{17}}{4}$	B1 B1 B1 (3) B1 M1 A1 M1 A1 cso (5)	Don't insist on labels Attempt correct equation Must be $x+2$ on RHS Correct 3TQ Solving Must choose -

Question Number	Scheme	Marks	Notes
Q2 (a)	$y=x^{\sin x}$ so when $x=\frac{\pi}{2} \Rightarrow y=\frac{\pi^{1}}{2} \quad=\frac{\pi}{2}$	B1	
	$\ln y=\sin x \ln x$	M1	Use of logs (o.e)
	$\underline{1} \frac{d y}{d x}=\cos x \ln x+\underline{\sin x}$	M1	Use of product rule
	$\bar{y} \frac{d y}{d x}=\cos x \ln x+\frac{x^{\prime}}{x}$	A1	
	$\left[\frac{d y}{d x}=x^{\sin x}\left(\cos x \ln x+\frac{\sin x}{x}\right)\right]$		Some correct sub in their y^{\prime} dy
	$\text { at }\left(\frac{\pi}{2}, \frac{\pi}{2}\right) \text { gradient }=\frac{\pi}{2}\left(0+\frac{1}{\pi / 2}\right)=1$	M1	$\frac{\mathrm{d} x}{}{ }^{x=\pi / 2}$
	$\therefore \quad$ Equation of tangent is $y=x$	A1 cso	
	If it touches again then $y=x \quad \Rightarrow \sin x=1$	M1	Method $\rightarrow \sin x=1$
	$\Rightarrow \quad x=\frac{\pi}{2}+2 n \pi$	A1	May be listed...
	Gradient at $\left(\frac{\pi}{2}+2 n \pi\right)$ is $\left(\frac{\pi}{2}+2 n \pi\right)\left[0+\frac{1}{\frac{\pi}{2}+2 n \pi}\right]=1$	A1	Check points satisfy $m=1$ plus comment
	\therefore at points $\left(\frac{\pi}{2}+2 n \pi, \frac{\pi}{2}+2 n \pi\right) \quad y=x$ is a tangent.	[9]	

Question Number	Scheme	Marks	Notes
Q4 (a)	$f^{\prime \prime}(x)=\frac{v u^{1}-u v^{1}}{v^{2}}$	M1	Use of Quotient rule
	$f^{\prime}(k)=0 \Rightarrow u(k)=0 \quad \therefore \quad f^{\prime \prime}(k)=\frac{v u^{1}-0}{v^{2}}$	M1	Sub $u(k)=0$
	$\therefore \quad f^{\prime \prime}(k)=\frac{u^{1}(k)}{v(k)} \quad(*) \quad\left(\text { accept } \frac{u^{1}}{v}\right)$	A1 csoo (3)	Insist on k not x
(b) (i)	A (0, -3)	B1 (1)	Accept $y=-3$
(ii)	Asymptotes $\quad \underline{x}=1, x=-1$		Both
	and $\underline{y=2}$	B1 (2)	
	 Area, $T=\frac{1}{2} \times 2 a \times(b+3)$ $T=a\left[\frac{2 a^{2}+3}{a^{2}-1}+3\right]=\frac{5 a^{3}}{a^{2}-1}\left({ }^{*}\right)$	M1 A1 cso (2)	Any correct exp. for T in terms of a and b or complete $2^{\text {nd }}$ line
(iv)	$\begin{aligned} \frac{d T}{d a} & =\frac{\left(a^{2}-1\right) 15 a^{2}-5 a^{3} 2 a}{\left(a^{2}-1\right)^{2}} \\ & =\frac{5 a^{2}\left(3 a^{2}-3-2 a^{2}\right)}{\left(a^{2}-1\right)^{2}}=\frac{5 a^{2}\left(a^{2}-3\right)}{\left(a^{2}-1\right)^{2}} \end{aligned}$	M1 M1	Use of quotient rule to find $\frac{\mathrm{d} T}{\mathrm{~d} a}$ Solving $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$--> $a=\ldots$ or $a^{2}=\ldots$
	$\frac{d T}{d a}=0 \quad \Rightarrow a^{2}=3$ or $\underline{a=\sqrt{3}} \quad$ (or $a=0$ but $a>0$)	A1 (S+)	Condone $a= \pm \sqrt{3}$
	$\frac{d T}{d a}=\frac{5 a^{4}-15 a^{2}}{\left(a^{2}-1\right)^{2}} \text { compare } \frac{u}{v} \therefore \frac{d^{2} T}{d a^{2}}\left\|\quad a=\sqrt{3}=\frac{20 a^{3}-30 a}{\left(a^{2}-1\right)^{2}}\right\| \quad a=\sqrt{3}$	M1	Full method e.g. T " ($\sqrt{3}$) attempted
	$\mathrm{T}^{\prime \prime}(\sqrt{3})=\frac{60 \sqrt{3}-30 \sqrt{3}}{4}=\left(\frac{15 \sqrt{3}}{2}\right)>0 \quad \therefore \min$	A1	Full accuracy + comment
	$\therefore \text { Minimum area }=\frac{5 \sqrt{3} \times 3}{3-1} \quad=\frac{15 \sqrt{3}}{2}$	B1 (6)	Must come from $T(\sqrt{3}) \operatorname{not} T^{\prime \prime}(\sqrt{3})$
	$\text { N.B } \frac{d^{2} T}{d a^{2}}=\frac{10 a\left(a^{2}+3\right)}{\left(a^{2}-1\right)^{3}} \text { or } \frac{10 a\left(a^{4}+2 a^{2}-3\right)}{\left(a^{2}-1\right)^{4}}$	[14]	Suggest $\mathrm{S} 1>12$ S2 for S+ and 13 or 14.
	$\underline{\text { ALT for (iv) }} \quad \text { Attempt } \frac{d^{2} T}{d a^{2}}=\ldots$	M1	No value of a needed.
	Correct $\frac{d^{2} T}{d a^{2}}$ and comment.	A1	Fully correct and full comment.

Question Number	Scheme	Marks	Notes
	ALT for c If get $\sin C=\frac{\sqrt{15+} \sqrt{30}}{10}$ or method to find this $\frac{c}{\sin C}=\frac{a}{\sin A} \quad c=1+\sqrt{2}$ use of If get $\quad \cos C=\frac{\sqrt{45}-\sqrt{10}}{10}$ or method to find this Then $c^{2}=a^{2}+b^{2}-2 a b \cos C$ use of $\rightarrow \quad c^{2}=3+2 \sqrt{2} \quad \Rightarrow \quad \mathrm{c}=(3+2 \sqrt{2})^{\frac{1}{2}}$ Look out for similar variations of cosine rule with $\cos A$ Pythagoras $\text { height }=a \sin 60+\text { Pythagoras }$ $a \cos 60=1+$ other bit $1+\sqrt{2}$	M1 M1 M1 A1 M1 M1 M1 A1 M1 M1 M1 A1	

Question Number	Scheme	Marks	Notes
Q6 (a)	$\begin{aligned} & P \text { is }(\sqrt{3}, \ln 2) \\ & \frac{d y}{d x}=\frac{\dot{y}}{\dot{x}}=\frac{\tan t}{2 \cos t} \end{aligned}$	B1 M1 A1	Score anywhere. M1 attempt $\frac{\mathrm{d} y}{\mathrm{~d} x}$ A1 correct
	When $t=\frac{\pi}{3}$ $m=\sqrt{3}$	A1	
	Equation of tangent at P is: $\quad y-\ln 2=\sqrt{3}(x-\sqrt{3})$	M1	Attempt tangent at P. $\sqrt{ }$ their P and m
	A is where $y=0 \quad \therefore \quad-\frac{\ln 2}{\sqrt{3}}+\sqrt{3}=x \Rightarrow(x=) \frac{\sqrt{3}}{3}(3-\ln 2)$	A1 cso (6)	Allow $\frac{3-\ln 2}{\sqrt{3}}$
	Area under curve $=\int_{t=0}^{t=\pi / 3} y \mathrm{~d} x=\int_{(0)}^{(\pi / 3)} \ln \sec t .2 \cos t \mathrm{~d} t$	M1	Attempt $\int y \dot{x} \mathrm{~d} t \sqrt{ } \dot{x}$ condone missing 2
	$=[2 \sin t \ln \sec t]-\int 2 \sin t \tan t d t$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Attempt parts. Both parts correct.
	$=[\quad]-\int 2 \frac{\left(1-\cos ^{2} t\right)}{\cos t} d t$	M1	Use of $\mathrm{s}^{2}=1-\mathrm{c}^{2}$
	$=[\quad]-2 \int \sec t d t+2 \int \cos t d t$	M1	Split
	$=[2 \sin t \ln \sec t]-2 \ln \|\sec t+\tan t\| \underline{\underline{+2 \sin t}}$	A1, $\underline{\underline{\text { Al }}}$	Accept $\underline{\underline{\cos t \tan t}}$
	$\begin{aligned} & =\sqrt{3} \ln 2 \quad-(2 \ln [2+\sqrt{3}]-0)+\left(2 \frac{\sqrt{3}}{2}-0\right) \\ & =\sqrt{3}(\ln 2+1)-2 \ln (2+\sqrt{3})\rfloor \end{aligned}$	M1	Use of correct limits on all 3 integrals
	$\text { Area of } \Delta \quad=\frac{1}{2}\left[\sqrt{3}-\frac{\sqrt{3}}{3}(3-\ln 2)\right] \ln 2 \quad\left\{=\frac{\sqrt{3}}{6}(\ln 2)^{2}\right\}$	B1	Any correct expression.
	$\text { Area of } R \quad=\text { are under curve }- \text { area of } \Delta$	M1	$\int^{\text {Strategy must be }}$
	$\begin{equation*} =\sqrt{3}(\ln 2+1)-2 \ln (2+\sqrt{3})-\frac{\sqrt{3}}{6}(\ln 2)^{2} \tag{*} \end{equation*}$	A1 cso (11) [17]	
	$\underline{\text { ALT }} \quad$ Area $=-\frac{1}{2} \quad \int \ln \left(1-\frac{x^{2}}{4}\right) \mathrm{d} x \quad$ o.e.	M1	Condone missing - $\frac{1}{2}$
	$=\left[-\frac{1}{2} x \ln \left(1-\frac{x^{2}}{4}\right)\right]+\int \frac{-x^{2}}{4-x^{2}} \mathrm{~d} x$	$\begin{array}{\|l} \text { M1 } \\ \text { A1 } \end{array}$	Parts correct
	$=[\quad]+\int 1 \mathrm{~d} x-\int \frac{4}{4-x^{2}} \mathrm{~d} x$	M1	Split
	$=[\quad]+x-\int\left(\frac{1}{2-x}+\frac{1}{2+x}\right) \mathrm{d} x$	M1	Partial Fractions
	$=\left[-\frac{1}{2} x \ln \left(1-\frac{x^{2}}{4}\right)\right]+\underline{x}+\underline{\underline{\ln \left(\frac{2-x}{2+x}\right)}}$ Then use of limits etc as before.	A1, $\underline{\underline{11}}$ o.e.	

Question Number	Scheme	Marks	Notes
(d)	$\begin{aligned} & \overrightarrow{A C}=\left(\begin{array}{l} 7 \\ 4 \\ -5 \end{array}\right) \\ & \overrightarrow{B X}=\overrightarrow{B A}+t \overrightarrow{A C}=\left(\begin{array}{l} -5+7 t \\ 4 t \\ 5-5 t \end{array}\right) \\ & \text { But } \overrightarrow{B X} \perp^{r} \overrightarrow{A C} \quad \therefore\left(\begin{array}{l} -5+7 t \\ 4 t \\ 5-5 t \end{array}\right)\left(\begin{array}{l} 7 \\ 4 \\ -5 \end{array}\right)=0 \\ &-35+49 t+16 t-25+25 t=0 \\ & 90 t \quad=60 \\ & t=\frac{2}{3} \end{aligned}$ $\begin{align*} \overrightarrow{O D}=\overrightarrow{O B}+2 \overrightarrow{B X} & =\left(\begin{array}{l} 4 \\ 4 / 3 \\ 2 \end{array}\right)+2\left(\begin{array}{l} -5+14 / 3 \\ 8 / 3 \\ 5-10 / 3 \end{array}\right) \\ & =\left(\begin{array}{l} 10 / 3 \\ 20 / 3 \\ 16 / 3 \end{array}\right) \tag{7} \end{align*}$	M1 M1 M1 M1 A1 M1 A1 [18]	Attempt $\overrightarrow{A C}$ Expression for $\overrightarrow{B X}$ in terms of t Use of $\ldots \bullet \ldots=0$ Linear equation in t based on \bullet - Method for $\overrightarrow{O D}$ in terms of known vectors
S1 or S2 T1	Marks for Style Clarity and Presentation (up to max of 7) For a fully correct (or nearly fully correct) solution that is neat and succinct in question 2 to question 7 For a good attempt at the whole paper. Progress in all questions. Pick best 3 S1/S2 scores to form total.		

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481

Email publications@linneydirect.com
Order Code UA021532 Summer 2009

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

