Advanced Extension Award

Friday 30 June 2006 - Morning Time: 3 hours

Materials required for examination
Mathematical Formulae (Green) Items included with question papers
Graph paper (ASG2)
Answer Book (AB16) Nil

Candidates may NOT use a calculator in answering this paper.

Instructions to Candidates

In the boxes on the answer book, write the name of the examining body (Edexcel), your centre number, candidate number, the paper title (Mathematics), the paper reference (9801), your surname, initials and signature.
Answers should be given in as simple a form as possible. e.g. $\frac{2 \pi}{3}, \sqrt{ } 6,3 \sqrt{ } 2$.

Information for Candidates

A booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
Full marks may be obtained for answers to ALL questions.
The marks for individual questions and parts of questions are shown in round brackets: e.g. (2). There are 7 questions in this question paper.
The total mark for this paper is 100 , of which 7 marks are for style, clarity and presentation.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.
You must show sufficient working to make your methods clear to the Examiner. Answers without working may gain no credit.

1. (a) For $|y|<1$, write down the binomial series expansion of $(1-y)^{-2}$ in ascending powers of y up to and including the term in y^{3}.
(b) Hence, or otherwise, show that

$$
1+\frac{2 x}{1+x}+\frac{3 x^{2}}{(1+x)^{2}}+\ldots+\frac{r x^{r-1}}{(1+x)^{r-1}}+\ldots
$$

can be written in the form $(a+x)^{n}$. Write down the values of the integers a and n.
(c) Find the set of values of x for which the series in part (b) is convergent.
2. Given that $(\sin \theta+\cos \theta) \neq 0$, find all the solutions of

$$
\frac{2 \cos 2 \theta(\sin 2 \theta-\sqrt{ } 3 \cos 2 \theta)}{\sin \theta+\cos \theta}=\sqrt{6}(\sin 2 \theta-\sqrt{ } 3 \cos 2 \theta)
$$

for $0 \leq \theta<360^{\circ}$.
3. Given that $x>y>0$,
(a) by writing $\log _{y} x=z$, or otherwise, show that $\log _{y} x=\frac{1}{\log _{x} y}$.
(b) Given also that $\log _{x} y=\log _{y} x$, show that $y=\frac{1}{x}$.
(2)
(c) Solve the simultaneous equations

$$
\begin{align*}
\log _{x} y & =\log _{y} x \\
\log _{x}(x-y) & =\log _{y}(x+y) \tag{7}
\end{align*}
$$

4. The line with equation $y=m x$ is a tangent to the circle C_{1} with equation

$$
(x+4)^{2}+(y-7)^{2}=13
$$

(a) Show that m satisfies the equation

$$
\begin{equation*}
3 m^{2}+56 m+36=0 \tag{4}
\end{equation*}
$$

The tangents from the origin O to C_{1} touch C_{1} at the points A and B.
(b) Find the coordinates of the points A and B.

Another circle C_{2} has equation $x^{2}+y^{2}=13$. The tangents from the point $(4,-7)$ to C_{2} touch it at the points P and Q.
(c) Find the coordinates of either the point P or the point Q.
5. The lines L_{1} and L_{2} have vector equations
$L_{1}: \quad \mathbf{r}=-2 \mathbf{i}+11.5 \mathbf{j}+\lambda(3 \mathbf{i}-4 \mathbf{j}-\mathbf{k})$,
$L_{2}: \quad \mathbf{r}=11.5 \mathbf{i}+3 \mathbf{j}+8.5 \mathbf{k}+\mu(7 \mathbf{i}+8 \mathbf{j}-11 \mathbf{k})$,
where λ and μ are parameters.
(a) Show that L_{1} and L_{2} do not intersect.
(b) Show that the vector ($2 \mathbf{i}+\mathbf{j}+2 \mathbf{k})$ is perpendicular to both L_{1} and L_{2}.

The point A lies on L_{1}, the point B lies on L_{2} and $A B$ is perpendicular to both L_{1} and L_{2}.
(c) Find the position vector of the point A and the position vector of the point B.
6. Figure 1

Figure 1 shows a sketch of part of the curve C with equation

$$
y=\sin (\ln x), \quad x \geq 1 .
$$

The point Q, on C, is a maximum.
(a) Show that the point $P(1,0)$ lies on C.
(b) Find the coordinates of the point Q.
(c) Find the area of the shaded region between C and the line $P Q$.

The circle C_{1} has centre O and radius R. The tangents $A P$ and $B P$ to C_{1} meet at the point P and angle $A P B=2 \alpha, 0<\alpha<\frac{\pi}{2}$. A sequence of circles $C_{1}, C_{2}, \ldots, C_{n}, \ldots$ is drawn so that each new circle C_{n+1} touches each of $C_{n}, A P$ and $B P$ for $n=1,2,3, \ldots$ as shown in Figure 2 . The centre of each circle lies on the line $O P$.
(a) Show that the radii of the circles form a geometric sequence with common ratio

$$
\begin{equation*}
\frac{1-\sin \alpha}{1+\sin \alpha} . \tag{5}
\end{equation*}
$$

(b) Find, in terms of R and α, the total area enclosed by all the circles, simplifying your answer.

The area inside the quadrilateral $P A O B$, not enclosed by part of C_{1} or any of the other circles, is S.
(c) Show that

$$
\begin{equation*}
S=R^{2}\left(\alpha+\cot \alpha-\frac{\pi}{4} \operatorname{cosec} \alpha-\frac{\pi}{4} \sin \alpha\right) . \tag{5}
\end{equation*}
$$

(d) Show that, as α varies,

$$
\begin{equation*}
\frac{\mathrm{d} S}{\mathrm{~d} \alpha}=R^{2} \cot ^{2} \alpha\left(\frac{\pi}{4} \cos \alpha-1\right) . \tag{4}
\end{equation*}
$$

(e) Find, in terms of R, the least value of S for $\frac{\pi}{6} \leq \alpha \leq \frac{\pi}{4}$.

END

