

General Certificate of Education

Chemistry 6821

AEA Advanced Extension Award

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Question 1

(a) Hydrogen bonds/attraction between the lone pair on the nitrogen and the $\mathrm{H}^{(\delta+)}$ of water
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}^{+} \mathrm{H}+\mathrm{OH}^{-} \quad$ penalise $C_{5} H_{6} N^{+}$here only
(b) allow $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$

$$
\begin{equation*}
\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}^{+} \mathrm{H}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}+\mathrm{H}_{3} \mathrm{O}^{+} \tag{1}
\end{equation*}
$$

$$
K_{a}=\frac{\left[\mathrm{C}_{5} \underline{\mathrm{H}_{5}} \underline{\underline{\mathrm{~N}}]\left[\mathrm{H}_{3}\right.} \underline{\mathrm{O}^{+}}\right]}{\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}^{+} \underline{\mathrm{H}}\right]}
$$

Allow $\left[\mathrm{H}^{+}\right] \quad$ [NOT conseq on error in M2]
(c) $\quad \mathrm{N}$ (atom) forms a bond with each of two carbon (atoms)

Delocalised bond/e- cloud $/ \pi$ cloud $/ \pi$ bond/ delocalised electrons (using unpaired electron)
1 electron from N and 1 from each of 5 C
Lone pair is available to accept a proton $/ \mathrm{H}^{+} /$to be donated \therefore Lewis base
[if lone pair incorporated into ring, lose M2 and M3]
(d)(i)

must have charge
(d)(ii) $\quad \begin{aligned} & \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}^{+} \mathrm{COCH}_{3}+ \\ & \\ & \text { treat missing ' }+ \text { ' as repeat error }\end{aligned} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\underset{\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}^{+} \mathrm{H}}{\text { allow } \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}+\mathrm{H}^{+} / \mathrm{C}_{5} H_{5} \mathrm{NH}^{+} / \mathrm{C}_{5} H_{6} \mathrm{~N}^{+}}$

Question 2

General Sig Fig rule: minimum 3 s.f. - no max - penalise once per QUESTION
(a)(i) Rate $=\underline{\mathrm{k} \times\left[\mathrm{C}_{3} \underline{\mathrm{H}}_{6} \underline{1} \quad \text { accept [cyclopropane] } /\left[\left(\mathrm{CH}_{2}\right)_{3}\right] /\left[\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right]\right.}$
$=6.71 \times 10^{-4} \times 0.5=\underline{3.36 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}}$

At higher temperatures many more molecules have energy > activation energy
(a)(iii) $\frac{\log \left(3.14 \times 10^{-33}\right)}{\left(6.71 \times 10^{-4}\right)}=-\frac{E_{a}}{2.30 \times 8.31} \times\left(\frac{1}{298}-\frac{1}{773}\right)$
$(3 \times 8.31 \times 773) / 2=\underline{9.64}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)\left(\right.$ allow ans in $\left.\mathrm{J} \mathrm{mol}^{-1}\right) \quad$ ignore incorrect units
$E_{\mathrm{a}}=\underline{272}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (allow ans in $\mathrm{J} \mathrm{mol}^{-1}$) Not conseq ignore incorrect units
Activation energy is much greater than mean energy
qualified 'greater' / high numerical ratio - e.g. 30 times
NOT conseq on error in mean or E_{a} value
Some molecules do have $\mathrm{E} \geq \mathrm{E}_{\mathrm{a}} \quad$ conseq on error in mean / E_{a} values
Then collisions will allow more molecules to gain the required/sufficient energy
(a)(iv) Using enthalpy formation values:
$\Delta H=\Delta H$ (propene) $-\Delta H$ (cyclopropane)
$=20.4-53.3=-32.9\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Using bond enthalpy values:
$\Delta H=$ bonds broken - bonds formed
$=2 \times 345-612=+78\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
$-32.9 / \Delta H_{\mathrm{f}}$ likely to be more reliable/closer to true value
(ΔH_{f} is specific to individual compounds) bond enthalpies are average value, therefore less accurate/not specific
Strain in the ring / high bond pair - bond pair repulsion / small bond angle in ring
(b)(i) Mass dissolved $=1.69 \times 0.03 / 100=5 \times 10^{-4} \mathrm{~g}$

Moles $=5 \times 10^{-4} / 44=1.15 \times 10^{-5}$

$$
\begin{aligned}
& \text { Or } \mathrm{n}\left(\mathrm{CO}_{2}\right)=1.69 / 44=0.0384(\mathrm{~mol}) \\
& \quad \text { Moles }=0.0384 \times 0.03 / 100=1.15 \times 10^{-5}
\end{aligned}
$$

(b)(ii) $K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]^{2} /\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] /\left[\mathrm{H}^{+}\right]=\sqrt{ } K_{\mathrm{a}}\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] /$ correct substitution

$$
\begin{equation*}
\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(4.17 \times 10^{-7} \times 1.15 \times 10^{-5}\right)=2.19 \times 10^{-6} \quad \text { Conseq on moles in }(i) \tag{1}
\end{equation*}
$$

$\mathrm{pH}=5.66 \quad$ Conseq on $\left[\mathrm{H}^{+}\right] \quad$ minimum 2 decimal places
Assumes that $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ remains unchanged (because is a weak acid) /
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCO}_{3}{ }^{-}\right]$
(1) 4
requires explanation in words
(b)(iii)

$$
\begin{array}{l|l}
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]} \quad / \text { correctly substituted expression } \\
K_{\mathrm{a}}=\frac{\left(1.00 \times 10^{-6}\right) \times\left(1.00 \times 10^{-5}+2 x\right)}{\left(2.5 \times 10^{-4}-2 x\right)} & K_{\mathrm{a}}=\frac{\left(1.00 \times 10^{-6}\right) \times\left(1.00 \times 10^{-5}+x\right)}{\left(2.5 \times 10^{-4}-x\right)} \\
\text { But in } 1.0 \mathrm{dm}^{3} \text { initial moles of } \mathrm{HCO}_{3}^{-}=\text {original }\left[\mathrm{H}^{+}\right]=1.00 \times 10^{-5} / 1.0425 \times 10^{-5} \\
0.417=\frac{\left(1.00 \times 10^{-5}+2 x\right)}{\left(2.5 \times 10^{-4}-2 x\right)} & 0.417=\frac{\left(1.00 \times 10^{-5}+x\right)}{\left(2.5 \times 10^{-4}-x\right)} \\
2.834 x=9.42\left(2.5 \times 10^{-4}-2 x\right) 10^{-5} & 2.834 x=9.42\left(2.5 \times 10^{-4}-x\right) 10^{-5} \\
\mathrm{x}=3.33 \times 10^{-5} / 3.31 \times 10^{-5} & \mathrm{x}=6.62 / 2=3.33 \times 10^{-5} / 6.66 / 2=3.31 \times 10^{-5}
\end{array}
$$

(1) M1
(1) M2
(1) M3
(1) M4
(1) M5

Mass $=$ moles $\times 56(.1)$ so mass $=1.86 \times 10^{-3} / 1.83 \times 10^{-3} \mathrm{~g}$
conseq on moles in (5)
(1) M6 6

Error in (iii) - candidates uses original $\left[\mathbf{H}_{2} \mathbf{C O}_{3}\right]$ rather than $\left[\mathbf{H}_{2} \mathbf{C O}_{3}-(2) x\right]$

But in $1.0 \mathrm{dm}^{3}$ initial moles of $\mathrm{HCO}_{3}{ }^{-}=$original $\left[\mathrm{H}^{+}\right]=1.00 \times 10^{-5} / 1.0425 \times 10^{-5}$
(1) M3

Extra moles $\mathrm{HCO}_{3}{ }^{-}($due to added CaO$)=1.0425 \times 10^{-4}-1.00 \times 10^{-5}=9.43 \times 10^{-5} \mathrm{~mol}$
(0) M4
$2 \mathrm{~mol} \mathrm{HCO}_{3}{ }^{-}$are produced by 1 mol of CaO so moles of $\mathrm{CaO}=3.18 \times 10^{-5}$
i.e. moles $\mathrm{HCO}_{3}^{-} \div 2$
conseq on moles in (4)
Mass $=$ moles $\times 56(.1)$

$$
\text { so mass }=2.64 \times 10-3 \mathrm{~g}
$$

conseq on moles in (5)
(b)(iii) Additional allowed answer
$\left.K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}{ }^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]} \quad /\left[\mathrm{HCO}_{3}{ }^{-}\right]=\underline{K_{\mathrm{a}}} \underline{\left[\mathrm{H}_{2} \underline{\mathrm{H}}^{+}\right]} \underline{3} \underline{\mathrm{CO}}_{3}\right] \quad(=x) \quad /$ correctly substituted expression
(1) M1
(1) M2
$x=\frac{4.17 \times 10^{-7}\left(2.5 \times 10^{-4}-x\right)}{1.00 \times 10^{-6}} \quad x=7.35 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
But in $1.0 \mathrm{dm}^{3}$ initial moles of $\mathrm{HCO}_{3}^{-}=$original $\left[\mathrm{H}^{+}\right]=1.00 \times 10^{-5} / 1.0425 \times 10^{-5}$
(1) M3
(1) M4
(1) M5
i.e. moles $\mathrm{HCO}_{3}^{-} \div 2 \quad$ conseq on 'extra' moles in (4)

Mass $=$ moles $\times 56(.1) \quad$ so mass $=1.78 \times 10^{-3} \mathrm{~g} \quad$ conseq on moles in (5)
(b)(iv) Raising T will cause less CO_{2} to dissolve because process is exothermic/gases less soluble at higher temperatures

Increasing partial pressure/percentage CO_{2} will cause more CO_{2} to dissolve
Raising T causes pH rise and increasing partial pressure $/ \%$ causes pH fall only award if correct directions in amount of CO_{2} dissolved in M1 and M2
(1) 3

Question 3

(a)(i) Only minute/small amounts of ${ }^{234} \mathrm{U}$ and ${ }^{235} \mathrm{U}$ isotopes present or mostly/significantly more ${ }^{238} \mathrm{U}$
(a)(ii) No difference in chemistry
as chemistry determined by electron arrangement which is same for all isotopes
(b)(i) $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}+\mathrm{H}_{3} \mathrm{O}^{+}$
(b)(ii) $\mathrm{U}^{3+}(\mathrm{aq})<\mathrm{Al}^{3+}(\mathrm{aq}) / \quad \mathrm{U}^{3+}(\mathrm{aq})$ less acidic as $\mathrm{U}^{3+}(\mathrm{much})$ larger/has lower charge density

So less polarisation of water molecule/O-H bond / less weakening of O-H bond
U^{4+} has higher charge/smaller radius/higher charge density than U^{3+}, (so polarises water molecules more strongly) $\quad \operatorname{NOT}\left[U\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{4+}$
(c)(i)

8 coordinate bonds $=$ arrow heads
Correct NO_{3} attachment
Rest correct
(c)(ii) Bond angles $180^{\circ}, 90^{\circ}$ and 60° shown on diagram (values not required)

All three correct (2) any two correct (1) Not $2 \times$ equatorial angles
(d)(i) $\mathrm{UCl}_{5}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{UO}_{2}^{+}+5 \mathrm{Cl}^{-}+4 \mathrm{H}^{+}$or $+\mathrm{Cl}^{-}+4 \mathrm{HCl}$
(d)(ii) $\mathrm{UO}_{2}^{+}+4 \mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{U}^{4+}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{UO}_{2}{ }^{+} \rightarrow \mathrm{UO}_{2}{ }^{2+}+\mathrm{e}^{-}$
$2 \mathrm{UO}_{2}{ }^{+}+4 \mathrm{H}^{+} \rightarrow \mathrm{UO}_{2}{ }^{2+}+\mathrm{U}^{4+}+2 \mathrm{H}_{2} \mathrm{O}$
Not conseq
$\mathrm{UO}_{2}{ }^{+}, \mathrm{OS}+5$, forms $\mathrm{U}^{4+}, \mathrm{OS}+4$, which is reduction and
$\mathrm{UO}_{2}{ }^{+}, \mathrm{OS}+5$, forms $\mathrm{UO}_{2}^{2+}, \mathrm{OS}+6$, which is oxidation
(e)(i) $\begin{aligned} 3 \mathrm{U}^{4+}+2 \mathrm{AuCl}_{4}{ }^{-}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Au}+3 \mathrm{UO}_{2}{ }^{2+} & +12 \mathrm{H}^{+}+8 \mathrm{Cl}^{-} \\ + & 8 \mathrm{HCl}+4 \mathrm{H}^{+}\end{aligned}$
species
allow HCl with H^{+}missing on right hand side for species
(e)(ii) So different amount of U^{4+} formed

Hence different amount of Au deposited
(f)(i) Moles $\mathrm{UO}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \cdot 6 \mathrm{H}_{2} \mathrm{O}=1.30 \times 10-3 \mathrm{~mol}$

Moles water lost $=2.61 \times 10-3 \mathrm{~mol} /$ via M_{r} calculation
Mole ratio $\approx 2: 1$ so 2 moles water lost so formula $=\mathrm{UO}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \cdot 4 \mathrm{H}_{2} \mathrm{O}$
(f)(ii) N.B There was an error in the concentration of the potassium manganate(VII) solution given on the paper $\left(0.500\right.$ instead of $\left.0.0500 \mathrm{~mol} \mathrm{dm}^{-3}\right)$. The following methods for (f)(ii) are based on this error. For the first method answers have been included for $0.0500 \mathrm{~mol} \mathrm{dm}^{-3}$ in bold.

Moles $\mathrm{UO}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \cdot 6 \mathrm{H}_{2} \mathrm{O}=$ moles $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}=\underline{6.67 \times 10^{-4}} \mathrm{~mol}$
(1) M1

Moles $\mathrm{MnO}_{4}{ }^{-}=\underline{5.35 \times 10^{-3}} \mathrm{~mol} \quad\left[5.35 \times 10^{-4} \mathbf{~ m o l}\right]$
(1) M2

Moles $\mathrm{MnO}_{4}{ }^{-}$reacting with $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}=2.67 \times 10^{-4} \mathrm{~mol}$ conseq on M1
(1) M3

Moles $\mathrm{MnO}_{4}{ }^{-}$reacting with $\mathrm{U}=5.08 \times 10^{-3} \mathrm{~mol} \quad$ conseq on $M 2 \& M 3 \quad\left[\mathbf{2 . 6 8} \times \mathbf{1 0}^{-4} \mathbf{~ m o l}\right]$
(1) M4

Mole ratio $\mathrm{U}: \mathrm{MnO}_{4}{ }^{-}=6.67 \times 10^{-4}: 5.08 \times 10^{-3}=1: 8 / 1: 7.66$
[2.48: 1]
(1) M5

Number of e^{-}lost by one $\mathrm{U}=5 \times 8=40 \mathrm{e}^{-} / 5 \times 7.66=38 \mathrm{e}^{-}$
(1) M6 6

$\left[5 \div 2.48=2 \mathrm{e}^{-} \quad \therefore \mathrm{U}(\mathrm{IV})\right.$ oxidised to $\left.\mathrm{U}(\mathrm{VI})\right]$

Or, using moles of electrons method

Moles $\mathrm{UO}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \cdot 6 \mathrm{H}_{2} \mathrm{O}=$ moles $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}=\underline{6.67 \times 10^{-4}} \mathrm{~mol}$
(1) M1

Moles $\mathrm{MnO}_{4}{ }^{-}=\underline{5.35 \times 10^{-3}} \mathrm{~mol}$
(1) M2

Moles electrons removed by $\mathrm{MnO}_{4}^{-}=5.35 \times 10^{-3} \times 5=0.02675 \quad$ conseq on M2
(1) M3

Moles e- removed from one $\mathrm{UO}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \cdot 6 \mathrm{H}_{2} \mathrm{O} \quad$ Moles e- removed from one $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
$=\frac{0.02675}{6.67 \times 10^{-4}}=40.1$ conseq on M1 \& M3
$=6.67 \times 10^{-4} \times 2=1.34 \times 10^{-3}$ conseq on M1 (1) M4

Moles e- removed from one U
(1) M5

Number of e^{-}lost by one U
$=40.1-2=38(.1) \quad$ conseq on M4
$=0.02675-1.34 \times 10^{-3}=0.0254$
Number e- lost by one U
$=\frac{0.0254}{6.67 \times 10^{-4}}=38(.1) \quad$ conseq on M1\& M5 (1) M6

Question 4

Penalise a bond which is clearly drawn to the wrong atom once only

(a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOCH}_{3}+4[\mathrm{H}] \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{OH}$
$\mathrm{CH}_{3} \mathrm{CONHCH}_{3}+4[\mathrm{H}] \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NHCH}_{3}+\mathrm{H}_{2} \mathrm{O} \quad$ allow $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NHCH}_{3}$
(b)(i) alkenes and aromatic rings are electron rich (centres)/high electron density

Carbonyl groups have $\delta+$ carbon
hydride ions are nucleophiles/have lone pair/are repelled by electron
(b)(ii)

(1) Structure

Lone pairs not required in mechanism
[Not arrows from '-' charges]
(c) $\mathrm{LiAlH}_{4}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{LiOH}+\mathrm{Al}(\mathrm{OH})_{3}+4 \mathrm{H}_{2}$

A large volume of explosive/flammable gas is formed
(d)(i) structure of hex-4-en-2-one

linear structure earns M1 only
incorrect structure $=0$ for both marks
(1) geometrical isomer
(d)(ii) structure of hex-4-en-2-ol
if error in $C=C$ position in (d)(i), allow repeated error here

allow mirror image mark if $\mathrm{C}_{4} \mathrm{H}_{7}-$ used
Structure with clear chiral carbon (1) Mirror image (1) ignore errors in dots/wedge (C of) carbonyl group is (trigonal) planar (may be clarified by a diagram)

Attack (on C atom) equally likely from either side of the group (may be clarified by a diagram)
(e) \mathbf{C} has a $\mathrm{C}=\mathrm{C}$ double bond since reacts with bromine /
or from absorption at $1650 \mathrm{~cm}^{-1}$ in the infra-red
A and B have a $C=O$ from absorptions at 1720 and $1780 \mathrm{~cm}^{-1}$ in the ir
C has an OH (alcohol) from absorption over range $3250-3550 \mathrm{~cm}^{-1}$ in the ir
C must be tertiary alcohol since cannot be oxidised by acidified potassium dichromate(VI)
\mathbf{A} is

structure

$a: b: c=4: 4: 2$
upper pair must be one of the 4's, ditto lower pair

B is
 structure $a: b=6: 4$

C is

structure
(1)
$a: b: c: d=1: 2: 3: 4$
allow the following alternative structures for C

b

Question 5

(a)

T1 (both reactions are exothermic. \therefore) $K_{\mathrm{p}} / K_{\mathrm{c}}$ decreases with increase in temp.
T2 low temperature needed for good yield
T3 10% conversion suggests that a temperature lower than $250^{\circ} \mathrm{C}$ should be used
accept 'the yield mentioned in the question' in place of 10% conversion
T4 but faster rate (of production) at an elevated temperature
T5 $250^{\circ} \mathrm{C}$ provides compromise between rate and yield
$250^{\circ} \mathrm{C}$ must be mentioned either in $\mathrm{T3}$ or in T 5
P1 $K_{\mathrm{p}} / K_{\mathrm{c}}$ does not change with a change in pressure
P2 both reactions have fewer gas moles on rhs of equation allow 'both' from T1
P3 (\therefore) use of a high pressure needed for a good yield
P4 10% conversion suggests that a higher pressure higher than 70 atm should be used
P5 qualified high costs of high pressure plants - e.g. high build/energy etc. costs
P6 70 atm . compromise between yield and costs 70 atm . must be mentioned either in P4 or in P6
P7 an increase in pressure has no effect on the rate of production/reasoned statement that pressure increases rate of reaction - e.g. molecules closer together etc.

C1 catalysts provide an alternative route of lower activation energy
C2 more collisions/molecules will have $\mathrm{E} \geq \mathrm{E}_{\text {cat }}$ (than $\mathrm{E} \geq \mathrm{E}_{\text {uncat }}$) $\quad E_{\text {cat }}$ may be implied from ' \therefore more..'
C3 more collisions successful in unit time/higher proportion of collisions are successful with catalyst not just 'more collisions are successful'
C4 (\therefore) rate (of production) faster in presence of a catalyst
C5 allows operating temperature to be lower
C6 rate of forward and reverse reactions increased equally allow 'speed' in place of 'rate' here
C7 $\quad K_{\mathrm{p}}$ unchanged - no effect on yield

R1 heterogeneous - to provide surface for adsorption/chemisorption to occur
R2 holding reactant molecules closely together/ weakened bonds / intermediate formed with reactant molecule(s)

R3 copper-based - transition metal and can change oxidation state (during intermediate formation and breakdown to give products)
ignore 'd' orbital arguments
Q correct use of technical language in at least two sections
W written in sentences and all four sections attempted
C answers presented in a logical form in not less than three sections
(b)

M1 sulphur, chlorine and silicon all have covalent bonds

M2 sulphur and chlorine both small molecules / simple molecular / allow $S_{4}-S_{8}$ and $C l_{2}$
M3 (weak) intermolecular forces/van der Waals' etc. broken/overcome on melting
M4 magnitude of van der Waals' / induce dipole- dipole attractions increase with number of electrons /size/ surface area (accept M_{r})

M5 S_{8} /sulphur molecule has more electrons/is bigger/has more surface area than Cl_{2} /chlorine molecule
accept converse argument If covalent bonds are broken 0 for M3, M4 and M5

M6 silicon has giant covalent / macromolecular structure
M7 strong/many covalent bonds must be broken \therefore a lot of energy needed

L1 the charge on $\mathrm{Mg}^{2+}=$ charge on $\mathrm{Be}^{2+}>$ charge on Na^{+}need all 3 with charge numbers
$\mathbf{L 2}$ the radius of $\mathrm{Mg}^{2+}<$ radius of Na^{+}but $>$radius of Be^{2+} need all 3 with charge numbers if error in charge numbers in L1, allow refs to metal ions here
$\mathbf{L 3} \therefore$ attraction of O^{2-} / oxide ion for $\mathrm{Be}^{2+}>\mathrm{Mg}^{2+}>\mathrm{Na}^{+} \quad$ need all 3 with charge numbers
L4 the stronger the attraction between anion and cation, the greater the value of LE/description of LE
L5 Be^{2+} is very small / has a large (surface) charge density
L6 $\therefore \mathrm{O}^{2-}$ ion polarised leading to partial covalent character in BeO
L7 MgO more ionic in character/ much less polarisation of O^{2-} ion
separate statements needed for L6 and L7, NOT just a comparison

A1 $\mathrm{Na}_{2} \mathrm{O}$ is ionic/contains O^{2-} ion
A2 O^{2-} reacts with water forming OH^{-}ions/ionic equation
A3 $\mathrm{Al}_{2} \mathrm{O}_{3}$ is ionic with large degree of covalent character
A4 Reacts with both acids and bases/can act as both acid and base/equations
A5 $\quad \mathrm{SO}_{2}$ is covalent molecule
A6
reacts with water forming $\mathrm{H}_{2} \mathrm{SO}_{3}$ / equation $=\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HSO}_{3}$

PLUS

which (partially) dissociates to form H^{+}ions / equations $=$ ignore 'fully dissociates' $\mathrm{H}_{2} \mathrm{SO}_{3} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{SO}_{3}{ }^{2-} / \quad \mathrm{H}_{2} \mathrm{SO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HSO}_{4}{ }^{-} \quad$ allow ${ }^{\prime} \rightarrow$ 'arrow in place of ${ }^{\prime} \rightleftharpoons$ '

A7 Trend - $\mathrm{Na}_{2} \mathrm{O}$ basic; $\mathrm{Al}_{2} \mathrm{O}_{3}$ amphoteric; SO_{2} acidic
A8 Metals form basic, non-metals form acidic, oxides accept 'less metallic, more acidic' trend
Q correct use of technical language in at least two sections
W written in sentences and all four sections attempted
C answers presented in a logical form in not less than three sections

