

General Certificate of Education

Chemistry 6821

AEA Chemistry

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Question 1

(a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{SOCl}_{2} \rightarrow \mathrm{SO}_{2}+\mathrm{HCl}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{PCl}_{5} \rightarrow \mathrm{POCl}_{3}+\mathrm{HCl}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
($\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ must be shown once)
Both other products are gases therefore fewer products to separate/ simpler purification process
(Not more economic, allow SO_{2} is a gas POCl_{3} is a liquid)
(b) $\mathrm{Co}(\mathrm{OH})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{SOCl}_{2} \rightarrow \mathrm{CoCl}_{2}+6 \mathrm{SO}_{2}+10 \mathrm{HCl}$
(c) SOCl_{2} molecule has a dipole whereas $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ doesn't
$\mathrm{SO}_{2} \mathrm{Cl}_{2}$ has larger van der Waals' forces than SOCl_{2} since more electrons (Allow greater M_{r})

Total of van der Waals' + dipole - dipole greater for SOCl_{2} / more efficient packing / SOCl_{2} molecules can get closer together (If hydrogen bonding mentioned only M2 available)
(d) $\mathrm{SO}_{2} \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl} ;$ (allow ions on rhs)
(e) Increasing temperature pushes equilibrium to rhs/increases K_{c} (Forward reaction is endothermic) therefore reverse reaction is exothermic

Total 10

Question 2

(a) $\mathrm{F}_{2}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{~F}+\mathrm{HF}$

Halogen-Halogen bond must be broken / homolytic fission
The $\mathrm{F}-\mathrm{F}$ bond is weaker than $\mathrm{Cl}-\mathrm{Cl}$
The activation energy for F_{2} is lower /enough energy to break it at room temperature
(b) (i) The $\mathrm{H}-\mathrm{F}$ bond is stronger than the $\mathrm{H}-\mathrm{Cl}$ bond (therefore HF is less dissociated in aq solution)
(ii) For HF $K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]}$
$\left[\mathrm{H}^{+}\right]^{2}=5.62 \times 10^{-4} \times 0.20$
$\left[\mathrm{H}^{+}\right]=1.06 \times 10^{-2} \quad$ therefore $\mathrm{pH}=1.98$ or 2.97
(Accept 2 or 3 decimal places only)
Weak acid so assume $[\mathrm{HF}]=0.20$ or all H^{+}comes from HF or $\left[\mathrm{H}^{+}\right]=[\mathrm{F}]$

4
(iii) $\mathrm{HF}+\mathrm{NaOH} \rightarrow \mathrm{NaF}+\mathrm{H}_{2} \mathrm{O}$

Moles $\mathrm{NaOH}=50 / 1000 \times 0.100=5.0 \times 10^{-3}$
Moles HF remaining $=100 / 1000 \times 0.200-5 \times 10^{-3}=15.0 \times 10^{-3}$
$K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right] \times 5 / 15$;
(if $\left[H^{+}\right]^{2}$ used or $\sqrt{ } K_{a}$ C only M1 and M2 available)
$\left[\mathrm{H}^{+}\right]=3 \times 5.62 \times 10^{-4} \quad$ therefore $\mathrm{pH}=2.77$;
(Conseq. On M1 and M2)
(iv) $\mathrm{H}^{+}+\mathrm{F}^{-} \rightarrow \mathrm{HF}$
moles F^{-}left $=5.00 \times 10^{-3}-0.50 \times 10^{-3}=4.50 \times 10^{-3}$
Moles HF formed plus there already $=15.0 \times 10^{-3}+0.50 \times 10^{-3}$

$$
\begin{equation*}
=15.50 \times 10^{-3} \tag{1}
\end{equation*}
$$

$K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right] \times 4.5 / 15.5$ therefore $\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} \times 15.5 / 4.5$

$$
\begin{equation*}
=1.93 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \tag{1}
\end{equation*}
$$

Therefore $\mathrm{pH}=2.71$
(CE if moles of HF not calculated or if F^{-}not calculated as a difference)
pH remains approx constant because the solution is a buffer (stand alone);
(1) 4
(c) $K_{a}=\left[H^{+}\right][\mathrm{F}]$
assume [F] = 0.50;
(Can be given if seen in K_{a} relationship)
$\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} /\left[\mathrm{H}^{+}\right](=[\mathrm{HF}])\left(\right.$ Correct use of $\left.K_{w}\right)$
(If first two points correct but answer wrong check for arithmetic error)
$K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]^{2} \times 0.50 / 10^{-14}$
$\left[\mathrm{H}^{+}\right]^{2}=K_{\mathrm{a}} \times 10^{-14} / 0.50=5.62 \times 10^{-18} / 0.50$
$\left[\mathrm{H}^{+}\right]=3.35 \times 10^{-9}$ therefore $\mathrm{pH}=8.47$
(1) 4
(d) $\Delta H=+902-(406+506)$ (or correct cycle)
$=-10\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)\left(\right.$ Allow 1 mark for $\left.+10 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(e) Moles $\mathrm{NaF}=4 /(23+19)=9.5(2) \times 10^{-2}$ in $100 \mathrm{~cm}^{3}$
$\left[\mathrm{Na}^{+}\right]=\left[\mathrm{F}^{-}\right]=9.5(2) \times 10^{-1}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
$K_{\mathrm{s}}=9.06-9.07 \times 10^{-1} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$
(3 sig fig for Ks)
(f) $\quad \log _{10} K_{333}+4.24 \times 10^{-2}=\underset{(2.3 \times 8.31)}{\frac{10000}{3}} \quad\left(\frac{1}{333}-\frac{1}{293}\right)$
$\log _{10} K_{333}=-0.214-0.0424=-0.257$ therefore $K_{333}=0.554 \mathrm{~mol}^{2} \mathrm{dm}^{-6}$
$\left[\mathrm{Na}^{+}\right]=\sqrt{ }(0.554)=0.744 \mathrm{~mol} \mathrm{dm}^{-3}$
Solubility $=31.3 \mathrm{~g} \mathrm{NaF}$ in $1.0 \mathrm{dm}^{3}=3.13 \mathrm{~g}$ in $100 \mathrm{~cm}^{3}$ (Allow $3.0-3.2$) (1)
4
(Max 3 if \triangle His -10 or -0.01)
(Using $K_{s}=1.2 \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ and $\Delta H=-15 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ans $3.1-3.2$)
(If own value K_{s} or ΔH mixed with 'fall back' values, calculation must be checked)

Total 30

Question 3

(a) BaSO_{4} is very insoluble;
BaCO_{3} reacts with stomach or hydrochloric acids;
Forming a solution;
$\mathrm{BaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{BaCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ (Allow $\mathrm{H}_{2} \mathrm{CO}_{3}$)
(b) (i) $\mathrm{B}=$ structural formula for $\mathrm{Cl}_{3} \mathrm{SiOSiCl}_{2} \mathrm{OSiCl}_{3}$ showing all bonds;
(Allow any correct structure showing bonding and symmetry)
(ii) Moles $\mathrm{AgCl} / \mathrm{Cl}^{-}$precipitated $=42.1 \times 10^{-3} \times 0.0500$

$$
\begin{equation*}
=2.1(1) \times 10^{-3} \mathrm{~mol} ; \tag{1}
\end{equation*}
$$

Moles Cl in $\mathbf{A}=\frac{0.100}{285.2} \times 6=2.10 \times 10^{-3} \mathrm{~mol}$ hence \mathbf{A}
Or mass $\mathrm{Cl}=0.075 \mathrm{~g}$
Moles Cl in $\mathbf{B}=\frac{0.100}{400.3} \times 8=2.00 \times 10^{-3} \mathrm{~mol}$ (hence not \mathbf{B})
Or mass $\mathrm{Cl}=0.071 \mathrm{~g}$
(Allows answers in terms of moles or mass of Cl)
(c) (Red) $2 \mathrm{NH}_{3}+3 \mathrm{Cl}_{2} \rightarrow \mathrm{~N}_{2}+6 \mathrm{HCl}$

$$
\begin{equation*}
\text { (Accept } \left.6 \mathrm{H}^{+}+6 \mathrm{Cl}^{-}\right) \tag{1}
\end{equation*}
$$

(Base) $\mathrm{NH}_{3}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$
(Accept $\mathrm{NH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}^{+}$)
$8 \mathrm{NH}_{3}+3 \mathrm{Cl}_{2} \rightarrow \mathrm{~N}_{2}+6 \mathrm{NH}_{4} \mathrm{Cl}$
(d) (i) Empirical formula $=\mathrm{PNCl}_{2}$

Molecular formula $=\mathrm{P}_{4} \mathrm{~N}_{4} \mathrm{Cl}_{8}$
(both must be stated)
$4 \mathrm{PCl}_{5}+4 \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{P}_{4} \mathrm{~N}_{4} \mathrm{Cl}_{8}+16 \mathrm{HCl}$
(If no molecular formula deduced allow empirical formula in the equation)
$\mathrm{HCl}+$ irritant / acidic fumes + use fume cupboard etc
(ii) Single peak in spectrum

Octagonal molecule with alternating P and N atoms and 2 Cl atoms on each P
With alternating double and single bonds
Tetrahedral around each P
OR
4 N atoms in a square
P on each $\mathrm{N}+2 \times \mathrm{Cl}$ on each P
Pyramidal around each P (allow tetrahedral)
(Any other structures CE)
(e) (i) $\mathrm{ClO}_{3}^{-}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}+3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
$\mathrm{KClO}_{3}+3 \mathrm{SO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{SO}_{4}$
OR
$\mathrm{ClO}_{3}{ }^{-}+3 \mathrm{SO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Cl}^{-}+6 \mathrm{H}^{+}+3 \mathrm{SO}_{4}{ }^{2-}$
3
(ii) D Moles $\mathrm{AgCl}=\frac{0.414}{143.4}=2.89 \times 10^{-3} \mathrm{~mol}$
$\left[\mathrm{ClO}_{3}{ }^{-}\right]=0.0289 \mathrm{~mol} \mathrm{dm}^{-3}$
(Allow $0.029 \mathrm{~mol} \mathrm{dm}^{-3}$)
(iii) 1 Moles Fe^{2+} in $30.00 \mathrm{~cm}^{3}=6.30 \times 10^{-3} \mathrm{~mol}$

2 Moles $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ in $8.20 \mathrm{~cm}^{3}=1.85 \times 10^{-4} \mathrm{~mol}$
3 Excess moles $\mathrm{Fe}^{2+}=1.85 \times 10^{-4} \times 6=1.11 \times 10^{-3} \mathrm{~mol}$
4 Moles Fe^{2+} reacted with $\mathrm{ClO}_{3}{ }^{-}=6.30 \times 10^{-3}-1.11 \times 10^{-3}$

$$
\begin{equation*}
=5.19 \times 10^{-3} \mathrm{~mol} \tag{1}
\end{equation*}
$$

5 Ratio moles $\mathrm{Fe}^{2+}: \mathrm{ClO}_{3}{ }^{-}=5.19 \times 10^{-3}: 8.66 \times 10^{-4}=5.99: 1$
i.e. 6:1

6:1 ratio from data NOT from balanced equation / oxidation state changes
(Conseq. On [C/O ${ }^{3-}$] from (ii))
$6 \mathrm{ClO}_{3}^{-}+6 \mathrm{Fe}^{2+}+6 \mathrm{H}^{+} \rightarrow \mathrm{Cl}^{-}+6 \mathrm{Fe}^{3+}+3 \mathrm{H}_{2} \mathrm{O}$ (Allow correct equation if not contradicted by ratio from calculation)

Question 4

(a) (i) Empirical formula $=\mathrm{CH}$

Molecular ion at $m / z=78$ therefore $M_{\mathrm{r}}=78$
Molecular formula $\mathrm{C}_{6} \mathrm{H}_{6}$
All Hs equivalent since one signal in proton n.m.r
Q benzene
$M_{\mathrm{r}}=106$ so $\mathrm{CH}_{3} \mathrm{CH}_{2}$ added
\mathbf{R} ethylbenzene
(Concentrated $\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}$) is nitrating mixture/nitration
$M_{\mathrm{r}}=151$ so mono-nitration
\mathbf{S}, \mathbf{T} and \mathbf{U} 2-, 3- and 4-ethylnitrobenzene
(1) 10
(ii) Repeating units for \mathbf{V} and \mathbf{W} : cis- and trans-poly(ethynes) $2 \times(1)$ (Ignore brackets and ' n ')

Cis-trans isomerism/geometrical isomerism
(b) (i) (1) both arrows

(Lone pairs needs not be shown)
(ii) 3-D tetrahedral structure around chiral C of $\mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{Br}$

Mirror image
$\mathbf{Y C H} \mathrm{CBr}_{2} \mathrm{CH}_{3}$
(1) 3
(c) (i)

(Lone pairs needs not be shown)
(ii) Conversion 1: NaNH_{2}
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl} / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I}$
Conversion 2: NaNH_{2}
$\mathrm{CH}_{3} \mathrm{CHO}$
Conversion 3: $\mathrm{H}_{2} / \mathrm{Ni}$
Conversion 4: acidified potassium dichromate
Z $\quad \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(1) 7
(Allow name or formulae for reagents)
(If 3 and 4 reversed or incorrect Z is not conseq.)
Total 30

Question 5

(a) T1 Electronic configuration $\mathrm{Ti}+3: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{1}$and electronic configuration $\mathrm{Ti}+4: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$(Not [Ar]3d ${ }^{1}$ and [Ar])T2 3d electron well screened from nucleus by full s and p orbitals/Inner electrons
T2 3d electron well screened from nucleus by full s and p orbitals/ Inner electrons
T3 Relatively low energy requirement to lose this electron / relatively low ionisation energy
T4 More than compensated by energy released by new bonds formed in $\mathrm{Ti}(\mathrm{IV})$ compound
T5 $\quad \mathrm{Ti}+3$ compound coloured - $\mathrm{Ti}+4$ compounds colourless / white
T6 Transition metal ion characteristics/colour associated with partially filled d subshell
T7 $\quad \mathrm{Ti}+3$ has I unpaired d electron, $\mathrm{Ti}+4$ has no d electrons
7
C1 Complex ion formation
C2 Vacant d orbitals
C3 Which can accept electron pairs from ligands
S1 Electronic structure of Ti: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{2} 4 s^{2}$ (Allow [Ar] 3d $d^{2} s^{2}$)
S2 One 4s electron promoted to empty 3d orbital
S3 (Giving) four unpaired electrons so four covalent bonds can be formed
S4 The four bonding/electron pairs repel to distance of maximum Separation / minimum repulsion
S5 Tetrahedral molecule
S6 Hydrolysed by / reacts with the water vapour in moist air
S7 Forming hydrogen chloride fumes
S8 Balanced equation giving products as TiO_{2} or $\mathrm{TiO}_{2} \cdot \mathrm{XH}_{2} \mathrm{O}$ or $\mathrm{T}_{1}(\mathrm{OH})_{4}$ and HCl e.g. $\mathrm{TiCl}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{TiO}_{2}+4 \mathrm{HCl}$
8
P1 Addition polymerisation (1)
P2 Structural formulae of propene and repeat unit of poly(propene)(1)P3 Balanced equation(1) 3
17 max
QWC Correct use of technical language in at least two sections(1)
Written in sentences and all four sections consideredAnswers presented in logical form in not less than three sections(1)
(1) 3
Total 20

Question 5

(b) M1 to M6 METHOD MARKS

Titration Method
M1 Mix known concentration of sodium hydroxide
M2 With an excess of 2-bromopropane (in ethanol)
M3 After measured time interval
M4 Remove sample with pipette
M5 Add to (cold) water to stop/quench reaction
M6 Titrate with standard acid

OR

pH / spectroscopy method
M1 Mix known concentration of sodium hydroxide
M2 With an excess of 2-bromopropane in ethanol
M3 Start time on mixing
M4 Use pH probe or spectrophotometer
M5 Measure pH or absorption at fixed frequency
M6 At regular intervals
OR
$\mathrm{AgNO}_{3} \mathrm{METHOD}$
M1 and M2 only
M7 TO M11 PROCESS MARKS
M7 Repeat sampling at specified time intervals
OR
Repeat experiment varying the initial concentration of NaOH
M8 Titre or measured quantity varies with to $\left[\mathrm{OH}^{-}\right]$/ calculate different $\left[\mathrm{OH}^{-}\right]$

M9 Plot graph of $\left[\mathrm{OH}^{-}\right]$v time / multiple repeats and calculations (minimum 5)

M10 Calculate rate from gradients of graph

OR

from graph calculate the time for $\left[\mathrm{OH}^{-}\right]$to half at least twice
OR
compares at least four calculated values
M11 Plot graph of rate $v\left[\mathrm{OH}^{-}\right]$- straight line if first order wrt $\left[\mathrm{OH}^{-}\right]$
OR
times to half the $\left[\mathrm{OH}^{-}\right]$are constant
OR
draw conclusions from calculated values
(1) 11

O1 2-bromobutane is chiral/has 4 different groups attached to a carbon atom

O2 Rotation of plane of plane polarised light/ using a polarimeter
O3 Planar intermediate can be attacked from either side
O4 Equal amounts of both isomers/a racemic mixture formed
R1 lodo- fastest; chloro- slowest
R2 Due to bond strength increasing in order $\mathrm{C}-\mathrm{I}<\mathrm{C}-\mathrm{Br}<\mathrm{C}-\mathrm{Cl}$
B1 Benzene ring has a delocalised (Π) electron system
B2 Lone pair on Br atom enters into delocalised ring
B3 Strengthens the C-Br bond /decreases the polarity of the bond/ gives the $\mathrm{C}-\mathrm{Br}$ bond double bond character

B4 Delocalised electrons repel negative hydroxide ion/ high activation energy requirement to overcome stabilisation energy of delocalised ring

QWC Correct use of technical language in at least two sections;
Written in sentences and all four sections attempted;
Answers presented in a logical form in not less than three sections;
3
Total 20

