ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Chemistry 6821

Mark Scheme 2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Advanced Extension Award (AEA)

This Mark Scheme covers the Advanced Extension Award that AQA offers on behalf of all awarding bodies

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk Copyright © 2006 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Chemistry AEA

Question 1

(a) $\quad\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{CoCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O} \quad$ (only)
(b) $\quad\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+7 \mathrm{NO}_{2}^{-}+2 \mathrm{H}^{+} \rightarrow\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]^{3-}+\mathrm{NO}+7 \mathrm{H}_{2} \mathrm{O}$
(c) insoluble in water / K^{+}salts usually soluble
(d)

ethandioate ligands correctly bonded
3 ligands joined at 90° sites
mirror image
(1)
(e)

M1	mix a known amount of the cobalt(III) containing compound with a large excess of a dilute acid	mix the Cobalt (III) compound with the same $\left[\mathrm{H}^{+}\right]$in multiple experiments	absorption - colorimeter CO_{2} - syringe/balance
M2	single experiment - plot absorption curve	multiple experiments - initial rate outlined	multiple experiments - varying initial concentration of complex measurement of time for fixed vol. CO_{2}
M3	describe time to $1 / 2$ absorption is constant or find gradients at various points then plot [] v rate \rightarrow straight line	check/show that rate $\alpha[]$	concentration $\alpha 1 / \mathrm{t}$
M4		coler	

Question 2

(a) $\mathrm{K}_{\mathrm{c}}=[\mathrm{NO}] /\left[\mathrm{N}_{2}\right]^{0.5}\left[\mathrm{O}_{2}\right]^{0.5}$
let amount of NO formed $=x$ then amount $\mathrm{N}_{2}=$ amount $\mathrm{O}_{2}=(1-\mathrm{x} / 2)$
$\mathrm{K}_{\mathrm{c}}=(\mathrm{x} / \mathrm{V}) /(1-\mathrm{x} / 2) / \mathrm{V}=0.12$
$\mathrm{x}=0.12-0.06 \mathrm{x} \quad \mathrm{x}=0.12 / 1.06=0.11(3)$
$\%$ yield $=(0.113 / 2) \times 100=5.7 \% \quad$ (mark conseq. on M4)
(if K_{C} is wrong lose M3 and M4)
(if $K_{C}=\left[\mathrm{NO}^{2} /\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]\right.$ lose M3 and then 4 unless $K_{C}{ }^{2}$ allow full marks)
(if moles wrong but in terms of ' x ' lose M4 other wise lose M3 and M4)
(b) $\quad 2 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{2}+\mathrm{HNO}_{3}$
$\mathrm{O}=\mathrm{N}_{\mathrm{O}}$ (or correct 'dot and cross' diagram)
unpaired electron/free radical (tied to single electron in M2)
(not extra free electron)
(c) (i) $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{HSO}_{3}^{-}\right] /\left[\mathrm{H}_{2} \mathrm{SO}_{3}\right]$ or $\left[\mathrm{H}^{+}\right]_{2} /\left[\mathrm{H}_{2} \mathrm{SO}_{3}\right]$
$\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=0.029\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)\left(=\left[\mathrm{HSO}_{3}^{-}\right]\right)$
(1)
$\left[\mathrm{H}_{2} \mathrm{SO}_{3}\right]=0.1-0.029=0.071\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
$\mathrm{K}_{\mathrm{a}}=0.029^{2} / 0.071=1.17-1.2 \times 10^{-2}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
(if $\left[\mathrm{H}_{2} \mathrm{SO}_{3}\right]=0.1$ lose $\mathrm{M} 3 \quad K_{a}=8.29-8.41 \times 10^{-3}$
(ignore units unless wrong)
(ii) moles of $\mathrm{H}_{2} \mathrm{SO}_{3}$ used $=20.0 \times 0.100 / 1000=0.0020$
moles of OH^{-}added $=6.00 \times 0.200 / 1000=0.0012$
moles of $\mathrm{H}_{2} \mathrm{SO}_{3}$ remaining $=0.0020-0.0012=0.00080$
conseq on $\mathrm{M1}+\mathrm{M} 2$
moles of HSO_{3}^{-}produced $=$moles $\mathrm{OH}^{-}=0.0012$
$\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}}\left[\mathrm{HSO}_{3}^{-}\right] /\left[\mathrm{H}_{2} \mathrm{SO}_{3}\right]=1.20 \times 10^{-2} \times 0.00080 / 0.0012$
$=7.8-8.00 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ (conseq on K_{a} value)
$\mathrm{pH}=-\log \left(8.00 \times 10^{-3}\right)=2.10-2.11\left(\right.$ conseq on $\left.\left[\mathrm{H}^{+}\right]\right)$
(if $K_{a}=8.29-8.41 \times 10^{-3}\left[\mathrm{H}^{+}\right]=5.53-5.61 \times 10^{-3} \mathrm{pH}=2.25-2.26$)
(if moles $\mathrm{H}_{2} \mathrm{SO}_{3}$ used $=0.1$ lose M5 and M6)
(if 0.029 assume $\left[\mathrm{HSO}_{3}\right]=\left[\mathrm{H}^{+}\right] \max 3$)
(iii) $\left[\mathrm{HSO}_{3}^{-}\right]=0.1 \times 20 / 30=0.067$
$\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{SO}_{3}^{2-}\right] /\left[\mathrm{HSO}_{3}^{-}\right]=\left[\mathrm{H}^{+}\right]^{2} /\left[\mathrm{HSO}_{3}^{-}\right] \quad$ or $\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(\mathrm{K}_{\mathrm{a}}\left[\mathrm{HSO}_{3}^{-}\right]\right)$
$\left[\mathrm{H}^{+}\right]=/\left(6.20 \times 10^{-8} \times 0.067\right)=6.45 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
$\mathrm{pH}=4.19$
(if $\mathrm{HSO}_{3}^{-}=0.1$ allow M 2 and M3 otherwise $\mathrm{CE}=0$
$\left[\mathrm{H}^{+}\right]=7.87 \times 10^{-5} \mathrm{pH}=4.10$)
(penalise pH with 1 d.p. once only)
(d) (i) orders $(+$ reason $)$ w.r.t $\quad \mathrm{O}_{2}=0+\left[\mathrm{O}_{2}\right]$ halved - rate unchanged

$$
\begin{equation*}
\mathrm{HSO}_{3}^{-}=2+\left[\mathrm{HSO}_{3}\right] \times 3-\text { rate } \times 9 \tag{1}
\end{equation*}
$$

$\mathrm{H}^{+}=\left[\mathrm{H}^{+}\right]$at $\mathrm{pH} 5.0 \times 4$ that at pH 5.6
$2+$ Rate down $\times 4$ due to $\left[\mathrm{HSO}_{3}^{-}\right] \times 0.5$
Change in rate $\times 16$ due to $\left[\mathrm{H}^{+}\right] \times 4$
H^{+}ions are catalysts
O_{2} must be involved in a fast reaction step/ not in rds
(ii) . rate $=\mathrm{k}\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{HSO}_{3}^{-}\right]^{2} \quad$ (conseq on (i)-if not $C E$) $\mathrm{k}=4 \times 10^{6} \mathrm{~mol}^{-3} \mathrm{dm}^{9} \mathrm{~s}^{-1}$
(1)
answer (1) units (1) 3
Total 30

Question 3

(a) (i) one $\mathrm{H}_{2} \mathrm{O}$ loses H^{+}, so (BL) acid, another $\mathrm{H}_{2} \mathrm{O}$ gains H^{+}, so (BL) base.
(if both processes but no BL links 1 max)
(ii) $\quad 2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{NH}_{2}^{-}$
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{3} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$
(allow \rightarrow for $2^{\text {nd }}$ equation)
NH_{3} more basic/better lone pair donor/proton acceptor than $\mathrm{H}_{2} \mathrm{O}$
Equilibrium in ammonia is further to right than in water / ethanoic acid completely dissociates
(b) (i) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+2 \mathrm{NH}_{4}^{+}$

Curly arrow from N of ammonia molecule to H of co-ordinately bonded water
(lone pair need not be shown)
Curly arrow from $\mathrm{O}-\mathrm{H}$ bond to O atom

Structure $=$ octahedral diagram with water molecules in the axial positions.
Role NH_{3} in formation of $\mathrm{ppt}=\mathrm{BL}$ and L base, as proton removed from water molecule by lone pair donation
Role NH_{3} in formation of dk blue complex $=$ Lewis base, as ligand (replacement reaction) or explained
(1) 6
(ii) Lewis base $=\mathrm{SO}_{3}{ }^{2-}$; donates lone pair to $\underline{\mathrm{SO}}^{2+}$
$\mathrm{SOCl}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{3} \rightarrow 2 \mathrm{NaCl}+2 \mathrm{SO}_{2}$
White precipitate $=\mathrm{NaCl}$
(c) (i) With $\mathbf{H}_{\mathbf{2}} \mathrm{S}$
$\mathrm{SO}_{3}{ }^{2-}+6 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightarrow \mathrm{S}+3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{~S}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
Oxidation state/number of S from $+4 \rightarrow 0$
$\mathrm{SO}_{3}{ }^{2-}$ oxidising agent
$2 \mathrm{H}_{2} \mathrm{~S}+\mathrm{SO}_{3}{ }^{2-}+2 \mathrm{H}^{+} \rightarrow 3 \mathrm{~S}+3 \mathrm{H}_{2} \mathrm{O}$ electrons must not be included
(ii) With $\mathbf{K M n O}_{4}$
$\mathrm{SO}_{4}{ }^{2-}$ formed (1)
$\mathrm{SO}_{3}{ }^{2-}+2 \mathrm{OH}^{-} \rightarrow \mathrm{SO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$
$\mathrm{MnO}_{4}^{-}+2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{e}^{-} \rightarrow \mathrm{MnO}_{2}+4 \mathrm{OH}^{-}$
$\mathrm{SO}_{3}{ }^{2-}$ because oxidation state/number of S from $+4 \rightarrow+6$
$2 \mathrm{MnO}_{4}^{-}+3 \mathrm{SO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{MnO}_{2}+3 \mathrm{SO}_{4}{ }^{2-}+2 \mathrm{OH}^{-}$
(d) moles of $\mathrm{KMnO}_{4}=22.35 / 1000 \times 0.0200=4.47 \times 10^{-4} \mathrm{~mol}$
moles of $\mathrm{SO}_{3}{ }^{2-}$ in $25.0 \mathrm{~cm}^{3}=4.47 \times 10^{-4} \times \underline{5 / 2} \mathrm{~mol}$
total moles of $\mathrm{SO}_{3}{ }^{2-}$ in original sample $=4.47 \times 10^{-4} \times 5 / 2 \times \underline{250 / 25}=0.0112 \mathrm{~mol}$
$\mathrm{M}_{\mathrm{r}}\left(\mathrm{M}_{2} \mathrm{SO}_{3}\right)=1.05 / 0.0112=93.75 \quad$ (conseq if M1, M2 or $M 3=0$)
$\mathrm{A}_{\mathrm{r}}(\mathrm{M})=[93.96-(32.1+16 \times 3)] / 2=6.93 \therefore \mathbf{M}=$ Lithium $/ \mathrm{Li} \quad$ (conseq on $M 4$)
OR
For M4 calculate mass $\mathrm{M} \rightarrow 0.155 \mathrm{~g}$

$$
\text { M5 } \underset{0.02235}{\frac{0.155}{}} \rightarrow 6.93
$$

Question 4

(a) (i) $\mathrm{C}_{8} \mathrm{H}_{18}+12.5 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}$
(molecular formula only)
(ii) $\quad \mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}+\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}+16 \mathrm{O}_{2} \rightarrow \mathrm{PbBr}_{2}+10 \mathrm{CO}_{2}+12 \mathrm{H}_{2} \mathrm{O}$

Formulae (1) balancing(1)
2
(b) CO
NO_{x}
(1)
$2 \mathrm{CO}+2 \mathrm{NO} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{N}_{2}$
(ignore unburnt hydrocarbons)
(c) (i) 2
(ii) MTBE has dipole-dipole / van der Waals' imf and alcohols (also) have hydrogen bonding
hydrogen bonding stronger than the other imf
therefore less energy needed to overcome imf in MTBE
(iii)

(2 max if wrong alkene used)
n.b. lone pair need not be shown

Each step (1) x 3
(allow simultaneous deprotonation of methanol in step 2)

IF

(allow 1)
(d) (i) $\quad 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{Na} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}+\mathrm{H}_{2}$
(1) 1
(ii) $\quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}+\mathrm{BrCH}\left(\mathrm{CH}_{3}\right)_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{NaBr}$
nucleophilic substitution
(pernalise $-\mathrm{O}-\mathrm{Na}$ once)
(penalise wrong bromoalkane once)

(accept either $S_{n} 1$ or $S_{n} 2$ approach)
each curly arrow (1) x 2 (n.b lone pair on ethoxide ion not necessary\}
(2) 4
(iii) Elimination

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(1) 3
(e) \mathbf{A}

or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH}$

B $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ or $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
C

or $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{OH}$
X $\quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{OCH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \quad$ conseq on error in C (if alcohol)
D $\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}$
Y $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{3}$ (only)
E $\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
Z $\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
(allow $\mathrm{CH}_{3} \mathrm{CH}^{\mathrm{CH}} \mathrm{CHCH}_{2} \mathrm{CH}_{3}$ if \boldsymbol{E} given as $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}$)

Total 30 marks

Question 5

(a) 1. Both covalently bonded
2. SiO_{2} is macromolecular
3. strong covalent bonds must be broken
4. $\quad \mathrm{P}_{4} \mathrm{O}_{6}$ is simple molecular
5. weaker intermolecular/van der Waals' forces broken

1\&2. overall equation for the hydrolysis each chloride
3. both reactions involve the hydrolysis of a covalent chloride
4. donation of lone pair/coordination of oxygen of water molecule
5. using vacant 3d orbital on silicon/phosphorus atom/ to Si or P atom
formation of $\mathrm{HCl} / \mathrm{H}^{+}$which cause solution to be acidic
7. step repeated $3 / 2$ times to (initially) form $\mathrm{Si}(\mathrm{OH})_{4} / \mathrm{P}(\mathrm{OH})_{3}$

1. polarity of the OH (and PO) bonds shown on structure or described
2. (extensive) hydrogen bonding (occurs between molecules)
3. forming a (sufficiently) large 3-D network/structure for it to be solid at room temperature
4. hydrogen bonding persists in concentrated solution causing it to be viscous
5. as the solution becomes dilute, acid molecules/phosphate ions separated by water molecules
6. hydrogen bonding between phosphoric acid molecules and water
7. when phosphoric acid molecules condense water is eliminated
8. $\mathrm{P}-\mathrm{O}-\mathrm{P}$ links are formed

(1) $\mathbf{1 0}$

17 max

QWC correct use of technical language in at least one section
written sentences and all three sections attempted
answers presented in a logical form in not less than two sections

Total 20

Total 20 marks

