AQA

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

Advanced Extension Award

Chemistry 6821

Mark Scheme

2005 examination - June series

Abstract

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Advanced Extension Award (AEA)

This Mark Scheme covers the Advanced Extension Award that AQA offers on behalf of all awarding bodies

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk Copyright © 2005 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Question 1

(a) $\quad \mathrm{As}_{4} \mathrm{O}_{6}+12 \mathrm{NaOH} \rightarrow 4 \mathrm{Na}_{3} \mathrm{AsO}_{3}+6 \mathrm{H}_{2} \mathrm{O}$ etc; (allow ionic equations with $\left[\mathrm{As}(\mathrm{OH})_{4}\right]^{-}$or $\left[\mathrm{As}(\mathrm{OH})_{6}\right]^{3-}$)
$\mathrm{As}_{4} \mathrm{O}_{6}+12 \mathrm{HCl} \rightarrow 4 \mathrm{AsCl}_{3}+6 \mathrm{H}_{2} \mathrm{O}$ etc;
(1) 2 (allow ionic equations with As^{3+} or $\left[\mathrm{As}\left(\mathrm{H}_{2} \mathrm{O}\right) 6\right]^{3+}$ and any acid)
(b) $\mathrm{As}_{4} \mathrm{O}_{6}+12 \mathrm{Zn}+24 \mathrm{H}^{+} \rightarrow 4 \mathrm{AsH}_{3}+6 \mathrm{H}_{2} \mathrm{O}+12 \mathrm{Zn}^{2+}$;
(1) $\mathbf{1}$
(c) Sb has one more electron shell or larger atom or more shielding;
(1)
$\mathrm{Sb}-\mathrm{H}$ bond is longer;
(1)
$\mathrm{Sb}-\mathrm{H}$ bond energy less than As - H bond energy;
(1) 3
(CE $=0$ if ions considered)
(d) moles thio $=18.5 \times 0.050 / 1000$

$$
\begin{align*}
& =9.25 \times 10^{-4} ; \tag{1}\\
& =4.625 \times 10^{-4} ; \tag{1}\\
& =0.0346 \mathrm{~g} ;
\end{align*}
$$

moles $\mathrm{AsO}_{4}{ }^{3-}=9.25 \times 10^{-4} / 2=4.625 \times 10^{-4}$;
mass As $=4.625 \times 10^{-4} \times 74.9 \quad=0.0346 \mathrm{~g}$;
(1) 3
(answers must be to a minimum of 3 significant figures)
(penalise the last mark if an additional less accurate answer then given) (max one if M2 incorrect)
(mark consequentially to $A E$; one mark is lost)
(e) $\mathrm{CH}_{3} \mathrm{COO}^{-}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{CO}_{2}+7 \mathrm{H}^{+}+8 \mathrm{e}^{-}$;
(1) 1

Question 2

(a) (i) $K_{\mathrm{p}}=\frac{\mathrm{pH}_{2} \mathrm{xpO}_{2}^{0.5}}{\mathrm{pH}_{2} \mathrm{O}}$;
or shown in the calculation
Assume start with 1 mol of steam then, at equilibrium

	Moles	Mole fraction	Partial Pressure	Pp/atm	
$\mathrm{H}_{2} \mathrm{O}$	$1-0.05$	$0.95 / 1.025$ i.e. 0.927	107 kPa	1.06	(1)
H_{2}	0.05	$0.05 / 1.025$ i.e. 0.0488	5.61 kPa	0.556	(1)
O_{2}	0.025	$0.025 / 1.025$ i.e. 0.0244	2.80 kPa	0.0278	(1)

$K_{\mathrm{p}}=0.088$ or 0.089 (1) $\mathrm{kPa}^{0.5}$ (1) (0.0088 atm)
allow unit mark independently if K_{p} correct
If partial pressures not calculated allow:
Total moles
Correct method for the calculation of mole fraction
Correct method for the calculation of partial pressure
If K_{p} inverted or wrong allow max 3 for partial pressure calculations
If calculation in Pa i.e. answer $=2.81$ (1) Pa 0.5
(ii) Reaction endothermic;
K_{p} increases as T increases;
(allow conseq to inverted K_{p})
K_{p} unchanged with change in pressure;
(allow correct answers based on ΔG and $T \Delta S$)
(iii) not suitable for the manufacture of hydrogen
reason e.g. yield too small,
cost (of energy) to generate $3000 \mathrm{~K} O R$ are too high;
(b) (i) $\quad k_{1}$ small hence activation energy high $O R$
k_{2} larger hence activation energy low;
k_{1} small because covalent bond must be broken;
k_{2} larger because ions of opposite charge attract;
(1) 3
(mark M2 and M3 separately)
(ii) rate of forward $=k_{1}\left[\mathrm{H}_{2} \mathrm{O}\right]$; rate backward $=k_{2}\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$;
$k_{1}\left[\mathrm{H}_{2} \mathrm{O}\right]=k_{2}\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$or $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{H}_{2} \mathrm{O}\right]=K_{\mathrm{c}}$;
$K_{\mathrm{c}} \quad=k_{1} / k_{2} ;$
$=2.50 \times 10^{-5} / 1.39 \times 10^{11}=1.80 \times 10^{-16} \mathrm{~mol} \mathrm{dm}^{-3} ; ~(1)$
due to possible ambiguous reading of the question allow last two
marks for:
$\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{H}_{2} \mathrm{O}\right]=K_{\mathrm{c}}$;
$1.80 \times 10^{-16} \mathrm{~mol} \mathrm{dm}^{-3}$;
(regardless of method of calculation used)
(iii) $\quad K_{\mathrm{C}}$ is constant at a fixed temperature;
[$\mathrm{H}_{2} \mathrm{O}$] is approximately constant;
$K_{\mathrm{W}}=1.80 \times 10^{-16} \times 55.6$;
(do not allow $\left[10^{-7}\right]^{2}$ for the last mark)
(iv) $\quad \% \mathrm{H}^{+}=\left(1.0 \times 10^{-7} \times 100\right) / 55.6$;

Answer $=1.8 \times 10^{-7}$;
(c) (i) $\quad K_{\mathrm{a}}=1.26 \times 10^{-5}$;
$\left[\mathrm{H}^{+}\right]=3.55 \times 10^{-3} ;$
$\% \quad=0.355 \%$ or 0.036 or 0.059% if all 6 water molecules are considered;
Al^{3+} ions polarise co-ordinated water causing either release of ions or O - H bonds weakened;
note: alternative method for M1 and M2:
$\mathrm{pH}=1 / 2 \mathrm{p} K_{\mathrm{a}}-1 / 2 \log [\mathrm{HA}]$
$\mathrm{pH}=1 / 2 \mathrm{p} K_{\mathrm{a}}=2.45$;
$\left[\mathrm{H}^{+}\right]=3.55 \times 10^{-3}$ or 3.6×10^{-3};
(ii) moles $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}(\mathrm{aq})$ formed $=$ moles $\mathrm{NaOH}=0.02$;
moles $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq})=0.08-0.02=0.06$;
$\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} \times 0.06 / 0.02=3.78 \times 10^{-5}$;
$\mathrm{pH}=4.42$;
(1)

4

Question 3

(1)
(1)
the bidentate ligand shown correctly bonded;
(1) 4 if a key is given, N must be shown co-ordinately bonded to Co ignore charges
ignore duplicate structures
penalise incorrect structures; apply list principle if more than 3 given
(b)
(i) $\begin{aligned} & \mathrm{F}_{2} \rightarrow 2 \mathrm{~F} \bullet ; \\ & \mathrm{Xe}+\mathrm{F} \bullet \rightarrow \mathrm{XeF} \bullet \\ & \mathrm{XeF} \bullet+\mathrm{F}_{2} \rightarrow \mathrm{XeF}_{2}+\mathrm{F} \bullet \text { or } \mathrm{XeF} \bullet+\mathrm{F} \bullet \rightarrow \mathrm{XeF}_{2} ;\end{aligned}$
do not allow ionic species
do not allow Xe \bullet
apply list principle to propagation and termination steps
(ii) $2 \mathrm{XeF}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Xe}+4 \mathrm{HF}+\mathrm{O}_{2}$
allow $2 \mathrm{H}_{2} \mathrm{~F}_{2}$ or $4 \mathrm{H}^{+}+4 \mathrm{~F}^{-}$
(iii) XeF_{2}
a diagram showing linear shape ;
three lone pairs around Xe ;

XeF_{4}

a diagram showing square planar shape;
two lone pairs around Xe ;

$\mathrm{XeF}_{5}{ }^{-}$
a diagram with five bond and two lone pairs around Xe ;
bond angle $=72^{\circ}$;
allow lone pairs shown as \bullet or $\times \times$ but bonds must be lines penalise $X e \div F$ once only
$C E=0$ if number of lone pairs incorrect in XeF_{2} and XeF_{4}
(iv) $\left[\mathrm{XeF}^{+}\left[\mathrm{SbF}_{6}\right]^{-}\right.$;

i.e. each correct curly arrow scores 1 mark
electron pair does not have to be shown
allow an ionic mechanism
allow max one for:

(v) $\mathrm{XeF}_{6}+7 \mathrm{OH}^{-} \rightarrow \mathrm{HXeO}_{4}^{-}+3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{~F}^{-}$or
$\mathrm{XeF}_{6}+4 \mathrm{OH}^{-} \rightarrow \mathrm{HXeO}_{4}^{-}+3 \mathrm{HF}+3 \mathrm{~F}^{-}$or
$\mathrm{XeF}_{6}+\mathrm{OH}^{-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HXeO}_{4}^{-}+6 \mathrm{HF}$;
(1) 1
allow equations with H^{+}and F^{-}in alternative answers 2 and 3
(vi) $\mathrm{HXeO}_{4}^{-}+7 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow \mathrm{Xe}+4 \mathrm{H}_{2} \mathrm{O}$;
$\mathrm{HXeO}_{4}^{-}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{XeO}_{6}{ }^{2-}+5 \mathrm{H}^{+}+4 \mathrm{e}^{-} ;$
$5 \mathrm{HXeO}_{4}^{-} \rightarrow 3 \mathrm{XeO}_{6}{ }^{2-}+2 \mathrm{Xe}+\mathrm{H}^{+}+2 \mathrm{H}_{2} \mathrm{O}$;
final equation is not marked consequentially

[^0]
Question 4

(a)
(i) $\quad \mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \cdot$

u.v. light or heat or sunlight
allow product formed in either a propagation or a temination step
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$;

Ratio 3:2 for 1-chloro : 2 chloro from ratio of H atoms; the reason must be justified
(iii) The radical $\mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{CH}_{3}$ is planar around $\mathrm{C} \bullet$;

Therefore attack from either side; allow M2 only if M1 is given correctly
(iv) isomers are ++ and -- and +- All three given score Any two given score answers must be in words
(b) (i)

(1)
electron pairs do not have to be shown
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
do not allow the name
(iii)

allow name
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}$or name but not KMnO_{4}

$C E=0$ if other reagents used
(iv) $\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{-}$reacts with $\delta+\mathrm{H}$ or extracts a proton or H^{+}from water or lone pair on $\mathrm{H}_{2} \mathrm{O}$ donated to Mg^{2+}; $\mathrm{CH}_{3} \mathrm{CH}_{3}$;
(c)

B/C/D

(1)

(1)

(1)

E

(1)

G

H

I

(1)

J

(1) $\mathbf{1 0}$

Question 5

(a) sodium chloride and magnesium fluoride: ion-ion attraction
the charge on Mg^{2+} is larger than that on Na^{+}
the radius of Mg^{2+} is smaller than that on Na^{+}
the radius of F^{-}smaller than Cl^{-}
Mg^{2+} attracts $\quad \mathrm{F}^{-}$more strongly or Na^{+}attracts Cl^{-}less strongly $C E=0$ if type of interaction incorrect
diamond and silicon:
covalent bonds must be broken (on melting)
both macromolecular or giant covalent or giant molecular Si larger atom than C
longer and weaker bonds
$C E=0$ if a molecular species given
$C E=0$ if SiO_{2} considered
1-chlorobutane and bromomethane:
dipole - dipole attraction
chlorine more electronegativity than bromine
$\mathrm{C}-\mathrm{Cl}$ bond more polar than $\mathrm{C}-\mathrm{Br}$ bond; hence bigger dipole-dipole attraction
van der Waals attractions
van der Waals attractions also larger in 1-chlorobutane as
molecules are larger or longer or more temporary
dipole - dipole attractions can be produced
water and ethanol:
hydrogen bonding
water forms more hydrogen bonds than ethanol
van der Waals attractions
van der Waals attraction greater for ethanol as molecules larger or have more electrons
hydrogen bonding stronger than van der Waals attraction
Max 17

QWC Correct use of technical language in not less than 2 sections

Written in sentences and all 4 sections considered
Answers presented in a logical form in not less than 3 sections
(1)

Max 3
(b) M1 electrophiles have a positively charged atom or seek electrons(1)
M2 alkenes have high electron density between two C atoms or 4 electrons$o r$ in a π or in a double bond
M3 benzene has delocalised electrons or lower electron densitybetween C atoms(1)
M4 benzene less reactive or more stable or explained (1)
M5 needs a positive species produced by reaction with a catalyst(1)
M6 nucleophiles are negatively charged or are electron pair donors
M7 repelled by centres of high electron density(1)(1) 7
M1 a Brønsted - Lowry acid is a proton donor
M2 $\quad \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$(1)
M3 $\quad \mathrm{NH}_{3}$ is a better proton acceptor or stronger base or electron pair acceptor than $\mathrm{H}_{2} \mathrm{O}$
M4 $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{3} \rightleftharpoons \mathrm{NH}_{4}{ }^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$
M5 acid strength depends on equilibrium position(1)
M6 equilibrium to left in water but to right in ammonia ora valid comparison(1)M1 $\quad \mathrm{SiCl}_{4}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Si}(\mathrm{OH})_{4}+4 \mathrm{HCl}$
M2 $\quad \mathrm{nSi}(\mathrm{OH})_{4} \rightarrow\left(\mathrm{SiO}_{2}\right) \mathrm{n}+2 \mathrm{nH}_{2} \mathrm{O} \quad$ or in words or structures
M3 $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiCl}_{2}$ initially reacts with water forming $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}(\mathrm{OH})_{2}$
M4 molecules condense or water eliminated between molecules
M5 this forms a linear polymer
M6 in the presence of SiCl_{4} or $\mathrm{Si}(\mathrm{OH})_{4}$ chains link together

QWC correct use of technical language in at least one section
written in sentences and all 3 examples considered
W
A
answers presented in a logical form in not less than 2 sections
Max 3

[^0]: (c) M1 moles $\left(\mathrm{NH}_{3} \mathrm{OH}\right)_{2} \mathrm{SO}_{4}=4.33 \times 10^{-3} \mathrm{~mol}$;

 M2 moles $\left(\mathrm{NH}_{3} \mathrm{OH}\right)^{+}$used in the reaction $=8.67 \times 10^{-4} \mathrm{~mol}$;
 M3 moles MnO_{4}^{-}used $=3.47 \times 10^{-4} \mathrm{~mol}$;
 M4 $\mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{2+}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$ or
 $\mathrm{MnO}_{4}{ }^{-}: \mathrm{Fe}^{2+}$ ratio $=1: 5$;
 M5 moles Fe^{2+} produced by $\left[\mathrm{NH}_{3} \mathrm{OH}\right]^{+}=1.735 \times 10^{-3} \mathrm{~mol}$;
 M6 $\quad \mathrm{Fe}^{3+}:\left(\mathrm{NH}_{3} \mathrm{OH}\right)^{+}$ratio $=2: 1$;
 each N loses $2 e^{-}$
 M7 oxidation states of N : in $\mathrm{NH}_{2} \mathrm{OH}=-1$ in nitrogen oxide $=+1$
 M8 oxide $=\mathrm{N}_{2} \mathrm{O}$ or dinitrogen oxide
 M9
 $4 \mathrm{Fe}^{3+}+2\left(\mathrm{NH}_{3} \mathrm{OH}\right)^{+} \rightarrow \quad \mathrm{N}_{2} \mathrm{O}+4 \mathrm{Fe}^{2+}+6 \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}$
 if M1 wrong penalise M1, M6, M8 and M9; mark M2 and M7 consequentially if M2 wrong penalise M2, M6, M8 and M9; mark M7 consequentially if M3 wrong penalise M3, M6, M8 and M9; mark M5 and $M 7$ consequentially if M4 wrong penalise M4, M6, M8 and M9; mark M5 and M7 consequentially

