GCE 2004 June Series

ASSESSMENT and OUALIFICATIONS

Mark Scheme

Chemistry - Advanced Extension Award (Subject Code 6821)

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Advanced Extension Award (AEA)

This Mark Scheme covers the Advanced Extension Award that AQA offers on behalf of all awarding bodies

Further copies of this Mark Scheme are available from:

Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 01619531170
or
download from the AQA website: www.aqa.org.uk
Copyright © 2004 AQA and its licensors

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

Dr Michael Cresswell Director General

General Points

1. Mark in red.
2. Tick where mark is earned, not in margin.
3. Indicate errors which are penalised by underlining.
4. Ring errors which are not penalised.
5. Use a caret to indicate omission.
6. Write sub-totals in the margin at the end of each question.
7. Ring the total mark at the end of each question
8. Deduct one mark for an arithmetic error (AE) then mark consequentially (putting conseq in the margin.)
9. Wrong Chemistry (WC) or chemical error (CE) scores zero. (No consequential marking)
10. No marks for a contradiction.
11. Stick to the agreed mark scheme.
12. Do not make comments on the scripts.
13. Refer very difficult cases involving problems with several marks to the Senior Examiner.

Question 1

(a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

1
or $\quad \mathrm{SnCl}_{2}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{SnCl}_{6}\right]^{2-}+2 \mathrm{e}^{-}$
or $\quad \mathrm{Sn}^{2+}+6 \mathrm{Cl}^{-} \quad \rightarrow\left[\mathrm{SnCl}_{6}\right]^{2-}+2 \mathrm{e}^{-}$
species
balance

2

3
$=2.2(3): 1$ (allow multiples)
(e) dipole of water
attracted to high charge density on Ca^{2+} ion or Ca^{2+} hydrated or CaO reacts with water (1)
to form $\mathrm{Ca}(\mathrm{OH})_{2}$ (1)
(f) phenylamine has greater vdw (than water)
allow London forces or dispersion forces
both phenylamine and water have hydrogen bonding do not allow if hydrogen bonding, dipole-dipole and $v d w$ all given
larger vdw for phenylamine + one hydrogen bond $>$ smaller vdw $+(2)$ hydrogen bonds for water
allow total intermolecular forces greater for phenylamine

Question 2

(a) (i) the ion from which the electron is removed has a greater net positive charge
the electron removed from $\mathrm{Mg}+$ is at a lower energy (or attracted more)

OR $\quad M g+$ smaller than $M g$ (1)
(Outer electron nearer to) attraction of nucleus (1)
(ii) energy is released because there is a net attraction for the added electron by the oxygen nucleus
but the O^{-}ion has an overall negative charge or therefore electron repelled
energy must be supplied to add an electron
(iii) method correct
correct numbers used
answer $=3888$ (ignore sign)
3
method marks; allow 496/2 used (1)
if both -142 and +844 used allow (1)

NB 4136 scores (1)
(iv) M1 (numerically) smaller (must be linked to LE of formation or dissociation)
M2 because Cl^{-}ion has only a single charge
M3 and Cl^{-}is larger than O^{2-}
M4 therefore weaker attraction between Cl^{-}and Mg^{2+} or
converse
allow (1) if surface density of charge stated rather than M2 and M3
(b) (i) $\quad\left[\mathrm{OH}^{-}\right]^{2}=1.1 \times 10^{-11} /\left[\mathrm{Mg}^{2+}\right]=5.5 \times 10^{-14}$
$\left[\mathrm{OH}^{-}\right]=2.35 \times 10^{-4}$
$K_{\mathrm{W}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
$\left[\mathrm{H}^{+}\right]=K_{\mathrm{W}} /\left[\mathrm{OH}^{-}\right]=4.26 \times 10^{-11}$
$\mathrm{pH}=10.37 \quad$ allow 10.36 to 10.38
(1) 5
equilibrium shifts to the left
concentration of $\mathrm{Mg}^{2}+$ reduced or $\mathrm{Mg}(\mathrm{OH})_{2}$ precipitates/ formed
(ii) concentration of hydroxide ions is higher
therefore $\mathrm{Ca}(\mathrm{OH})_{2}$ is more soluble (only allow if first mark given)
add $\mathrm{NaOH} \quad$ allow OH^{-}or other suitable base
keep pH below 12.3 allow $12.3>p H>9.5$
to prevent precipitation of $\mathrm{Ca}(\mathrm{OH})_{2}$
allow; ions remain in solution or to keep $\mathrm{Ca}(\mathrm{OH})_{2}$ in solution
precipitate $\mathrm{Mg}(\mathrm{OH})_{2}$
allow addition of a buffer (1)
$12.3>p H>9.5$ (1)
(c) (i) uses only gaseous species in calculation
mole fractions correct (mark consequentially)
i.e. O_{2} is $1 / 3$ and $C l_{2}$ is $2 / 3$ if only gases used but
O_{2} is 0.25/1.75 and Cl_{2} is 0.5/1.75 if solids included
partial pressures of Cl_{2} and O_{2} (mark consequentially)
$K \mathrm{p}=(\sqrt{ } 33.3) / 66.7=0.0866$ Allow 0.086-0.087
mark consequentially only to total moles $=1.75$ then $K p=0.132$
units $=\mathrm{kPa}^{-1} / 2$
$N B$ if candidates work in Pa then $K p=2.7(4) \times 10^{-3}$ (1) Units $\mathrm{Pa}^{-1 / 2}$ (1)
(ii) total number of moles $=0.6$ (allow 1.6 if solids included)
mole fraction correct (mark consequentially even if total moles wrong)
e.g. O_{2} is $2 / 3$ and Cl_{2} is $1 / 3$ if only gases used but O_{2} is 0.4/1.6 and Cl_{2} is 0.2/1.6 if solids included
correct substitution into $K p$ relationship
$K_{\mathrm{p}}=790-820$
4
allow consequentially to K_{p} from above but only if total
mole $=0.6$
$N B$ using given value, $K p=0.13$, answer in $(i i)=350-370$ for full marks
(iii) $M 1$ carbon removes O_{2} (as CO_{2} or CO) or reduces amount/concentration of O_{2}

M2 equilibrium moves to the right
M3 ΔH for the reaction $=(2 \times-137)-(-395)$ data used correctly

$$
=+121\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \text { or }-121 \text { for }
$$ reverse reaction

M4 reaction endothermic
M5 (equilibrium shifts to right at high temperature hence) more CO (relative to CO_{2}) allow the converse answer
only allow $M 4$ and $M 5$ if a value of ΔH has been calculated

Question 3

(a)

to (electron deficient) B

Q puckered or not planar or not flat
P bond angles $\sim 120^{\circ}$ or bond lengths different
P ; Trigonal planar bonding given as reason for planar structure puckered
(iv) $\quad M 1 \mathrm{HCl}$ is polar or a dipole shown on the molecule
$M 2$ lone pair donated from N to $\mathrm{H}^{(+)}$or ${ }_{\mathrm{B}}=\mathrm{C}_{\mathrm{N}}^{\mathrm{H}} \mathrm{Cl}_{-}^{\delta-}$
$M 3 \mathrm{Cl}^{-}$forms a dative/covalent bond with B or $\stackrel{-}{\mathrm{C}}: \stackrel{+}{\mathrm{B}}-\mathrm{N}$
allow (1) if M2 and M3 not given but reaction stated to be an electrophilic addition
structure
ignore any charges included in this structure

(1) 4
(b) (i) brown precipitate of $\mathrm{Fe}(\mathrm{OH})_{3}$ or $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ where $x=0-4$
allow $\mathrm{Fe}(\mathrm{OH})_{2}$ (1)
(Reduction; $) 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-}$
(Oxidation; $\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}$
(Oxidation;) $\mathrm{Cr}_{2} \mathrm{O}_{3}+5 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{CrO}_{4}{ }^{2-}+10 \mathrm{H}^{+}+6 \mathrm{e}^{-}$
or $\mathrm{Cr}_{2} \mathrm{O}_{3}+10 \mathrm{OH}^{-} \rightarrow 2 \mathrm{CrO}_{4}^{2-}+5 \mathrm{H}_{2} \mathrm{O}+6 e^{-}$etc.
or $\mathrm{Cr}^{3+}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CrO}_{4}{ }^{2-}+8 \mathrm{H}^{+}+3 e^{-}$etc.
$2 \mathrm{CrO}_{4}{ }^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}_{2} \mathrm{O}$
(1) 6
(ii) empirical formula of $\mathbf{Z}=\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
method answer
(1)
$\mathrm{pV}=\mathrm{nRT}$
$\mathrm{n}=\mathrm{pV} / \mathrm{RT}=101000 \times 29110^{-6} / 8.31 \times 400=8.85 \times 10^{-3} \mathrm{~mol}$
$M_{\mathrm{r}}=1.37 / 8.85 \times 10^{-3}=155$ allow $154-156$
empirical formula $=$ molecular formula
allow calculations based on GMV. Allow answers 154-156
structure $=$ tetrahedral
bonding $=2 \times \mathrm{Cr}=\mathrm{O}$ and $2 \times \mathrm{Cr}-\mathrm{Cl}$
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+4 \mathrm{Cl}^{-}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{CrO}_{2} \mathrm{Cl}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
species balanced
allow equations showing $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HSO_{4}^{-}or SO_{4}^{2-} e.g.
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+4 \mathrm{Cl}^{-}+6 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{CrO}_{2} \mathrm{Cl}_{2}+6 \mathrm{HSO}_{4}^{-}+3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{CrO}_{2} \mathrm{Cl}_{2}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{CrO}_{3} \mathrm{Cl}^{-}\right]+2 \mathrm{HCl}$

Question 4

(a) (i)

$\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}-\mathrm{H} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}^{-}+\mathrm{H}^{+}$
inductive effects of $\mathrm{C}_{2} \mathrm{H}_{5}$ and $\mathrm{CH}_{3} \mathrm{CO}$ compared
(effect of inductive effect on) strength of $\mathrm{O}-\mathrm{H}$ bond compared
link to number of $\mathrm{O}-\mathrm{H}$ bonds broken or equilibrium position
ability of anions to spread negative charge
effect on stability of $\mathrm{CH}_{3} \mathrm{COO}^{-}$and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$anions
linked to base strength of $\mathrm{CH}_{3} \mathrm{COO}^{-}$and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$anions or equilibrium position
hence $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ much less dissociated than $\mathrm{CH}_{3} \mathrm{COOH}$
(ii) the $\mathrm{CH}_{3} \mathrm{CH}_{2} \rightarrow$ inductive effect
strengthens $\mathrm{O}-\mathrm{H}$ or makes $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$a stronger base
$\mathrm{Cl} \leftarrow$ inductive effect
weakens $\mathrm{O}-\mathrm{H}$ or makes RCOO^{-}a weaker base
due to extra distance the effect of chlorine in 3 position is much less

F more electronegative than Cl

no stabilisation for trans- anion therefore second H^{+}lost more easily

6
(1) Max 2
(b) (i)

(1)

allow arrow side of ring if Kekule structure given allow mechanism marks consequentially to an incorrect product
(ii)

(1)

(1)
more of the 2 - isomer formed
allow isomer 4- if steric
hindrance explanation given
(1)
(iii)

6
allow an alternative oxidation e.g. by Cl_{2} followed by NaOH and HCl allow reduction by e.g. $\mathrm{Sn} / \mathrm{HCl}$ even if reaction order incorrect in second conversion
(c)

A B C	contain	$\mathrm{C}=\mathrm{O}$	
D E	contain	$\mathrm{O}-\mathrm{H}$	in alcohols
D	contains	$\mathrm{C}=\mathrm{C}$	

allow each absorption once in any one correct structure
Deducing the structure of \mathbf{A}

(1)
(1)
(1)

3

B

allow \boldsymbol{B} as $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{3}$ if structure of \boldsymbol{A} given incorrectly

C

D

or

E

allow any cyclic alcohol if no structure given for \boldsymbol{E}, allow structure has an OH but no $C=C$ (1)

F e.g.

(2)
allow any cyclic ether if no structure given for \boldsymbol{F}, allow structure has no $C=C, C=O$ or OH (1)

Question 5(a)

allow answer given in relevant examples

Rate

pressure/concentration
more particles collide
more collisions with $E>E$ a or more successful collisions increase in rate dependant on order of reaction
rate $\propto[A]^{\mathrm{n}}$ or Rate $=k[A]^{m}[B]^{n}$ or an example given
rate constant unchanged
surface area
more particles collide
more successful collisions
temperature
particles have more energy or greater velocity
rate increases as temperature increase
an exponential effect or rate increase rapidly
small increase in number of collisions
(large) increase in molecules with $E>E_{\mathrm{a}}$
more successful collisions
rate constant increases as temperature increases
catalyst
alternative route
(1)
lower activation energy
(1)
more molecules with $E>E_{c \text { at }}$
rate constant increases
(1) Max 15

Equilibrium
effect predicted by Le Chatelier's Principle
(total) pressure
effect depends on change in moles of gas, Δ_{n}
displace to right if $\Delta_{\mathrm{n}}=$ negative or converse
equilibrium constant unchanged
partial pressure/ concentration
(1)
application of Le Chatelier's Principle to an example
equilibrium constant unchanged
temperature
depends on the sign of ΔH
displaced to right if ΔH is positive or converse
value of K_{p} increase if ΔH is positive or converse
catalyst
rate of forward and back reactions increased equally
equilibrium not displaced
K_{p} unchanged

Question 5(b)

(i) all examples given in part (i) must be real molecules

Structural

same molecular formulae, different structures/ arrangement of atoms
a pair of molecules showing (chain) isomerism a pair of molecules showing (position) isomerism
a pair of molecules showing (functional group) isomerism

Stereoisomers
same structural formula, atoms arranged differently in space
Geometrical or cis - trans
restricted or no rotation about a double bond a pair of molecules showing geometrical isomerism

Optical
asymmetric carbon, or carbon with four different groups attached, or no plane/ centre/ axis of symmetry, or nonsuperimposable rotate polarised light in opposite directions

(ii) in part (ii), ignore charges on all complexes and allow uncharged species

Octahedral
geometrical isomers can be formed
sketched structures of a complex with unidentate ligands, $\left[\mathrm{M}(\mathrm{X})_{2}(\mathrm{Y})_{4}\right]\left({ }^{\mathrm{n}+/}\right)$ showing Xs at 90°
a complex with unidentate ligands, $\left[\mathrm{M}(\mathrm{X})_{2}(\mathrm{Y})_{4}\right]\left({ }^{\mathrm{n}+/}\right)$ showing Xs at 180°
if structures not given, allow complex written as $\left[M(X)_{2}(Y)_{4}\right]^{n+/)}$ (1)
a complex with bidentate ligands $\left[\mathrm{M}(\mathrm{Z})_{2}(\mathrm{Y})_{2}\right]\left(^{\mathrm{n}+/}\right)$ showing bidentates's at 90°
a complex with bidentate ligands $\left[\mathrm{M}(\mathrm{Z})_{2}(\mathrm{Y})_{2}\right]\left({ }^{\mathrm{n}+/-}\right)$ showing bidentates's at 180°
if structures not given, allow complex written as $\left[M(Z)_{2}(Y)_{2}\right]\left(^{n+-}\right)(1)$
optical isomers can be formed
sketched structures of
an optically active complex
the mirror image of the complex
if structures not given, allow a written complex with three
bidentate ligands (1)

Tetrahedral
no geometrical isomers can be formed
all isomers have a plane/ centre/ axis of symmetry, or are superimposable
optical isomers can be formed
sketched structures of
a complex with four different ligands
the mirror image of the complex
if structures not given, allow a written complex with four different ligands (1)

NB Do not allow answers which refer to square planar complexes as the question asks for complexes with octahedral and tetrahedral shapes.

Max 15

