

Q U A L I F I C A T I O N S A L L I A N C E Mark scheme June 2003

Advanced Extension Award

Chemistry

6821

Copyright © 2003 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth & Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1HQ Kathleen Tattersall: Director General

(a)	Same type of bonds broken and made or $C - O$ and $O - H$ Same number of bonds broken and made or $C - O$ and $O - H$ Strained/stressed ring (not stretched) or repulsion between bonding electron pairs Less energy required to break bonds or more stable product or ring unstable or more energy given out when bonds made than used when bonds broken	 (1) (1) (1) (1) 	4
(b)	$\begin{array}{cccc} H_2C & -CH_2 & C_2H_5 - O - H & C_2H_5 - O^+ - H \\ & & & & & & \\ O & & \rightarrow & H_2C - CH_2 & & \rightarrow & H_2C - CH_2 & + H^+ \rightarrow & C_2H_5OCH_2CH_2 \\ & & & & & & H_2C - CH_2 & + H^+ \rightarrow & C_2H_5OCH_2CH_2 \\ & & & & & & & \\ & & & & & & \\ H & & & &$	ОН	4
Or	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₂ OH	
NB	Mark four correct arrows Allow answers in words Three marks can be scored if water used rather than ethanol: i.e. lose third mark		
(c)	$\begin{array}{cccc} H_2C-CH_2 & & \\ / & \backslash & \\ O & O & or & HCOOCH_2CH_2OH & or & HCOOCH_2CH_2OOCH \\ & \backslash & / & \\ & C & \\ / & \backslash & \\ H & O-H & \end{array}$		1
(d)	Compound X $H_2C - CH_2$ Products; (2) any two from $/ \ \ / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	(1)	
NB	CE = O if X is incorrect in part (d)	(1)	4

(e) Compound Y $CH_3(CH_2)_3OMgCl$ (1)

Product: $CH_3(CH_2)_3OH$ or name (not consequential to an incorrect **Y**) (1)

2

Rate slows down again or curve flattens out As W decreases (towards zero) or used up or reactants used up

Maximum rate tangent can be drawn accurately

Initial rate tangent can be drawn accurately Initial rate tangent; position after origin uncertain or greater error with smaller range or gradient/rate is changing

10

(1)

(1)

(1)

(1)

(b)(i)	Order with respect to $W = 2$ At pH = 3, $[H^+] = 1.0 \times 10^{-3} \text{ mol dm}^{-3}$ and at pH = 2.82, $[H^+] = 1.5 \times 10^{-3} \text{ mol dm}^{-3}$	(1) (1)
	Hence order with respect to $[H^+] = 1$	(1)
	Rate = $k[\mathbf{W}]^2 [\mathrm{H}^+]$ (this scores 4 marks)	(1)
	$k = \frac{8.8 \times 10^{-5}}{0.04^2 \times 10^{-3}} = 55 \text{ mol}^{-2} \text{ dm}^6 \text{ s}^{-1}$	(1)
		5
NB	Value of k not marked consequentially to incorrect orders Working does not have to be shown	
(ii)	Initial rate = $k \times 0.1^2 \times 10^{-2.9} = 6.9 \times 10^{-4} \text{ (mol dm}^{-3} \text{ s}^{-1}\text{)}$	(1)
NB	Marked consequentially to incorrect k but not to an incorrect rate equation	
	Graph: starts steeper crosses approaches final [X] = 0.10	(1) (1) (1)
	Differences: as $[H^+]$ present at the start, initial rate higher rate does not increase as $[H^+]$ constant or solution buffered Similarity: graph finishes at same asymptote to $[X]$ (<i>must be stated</i>)	(1) (1) (1) 7

NB If own incorrect lower initial rate used score max 3 for graph less steep (1); approaches final [X] = 0.10 (1) asymptote to [X] stated (1)

(c)(i)
$$K_1 = \frac{\left[H^+\right]\left[HCO_3^-\right]}{\left[H_2CO_3\right]}$$
(1)

(But
$$[\mathrm{H}^+] \approx [\mathrm{HCO}_3^-]$$
 hence) $[\mathrm{H}^+] = \sqrt{K_1 [\mathrm{H}_2 \mathrm{CO}_3]}$ (this scores 2) (1)

Moles CO₂ =
$$\frac{pV}{RT} = \frac{100 \times 10^3 \times 0.134 \times 10^{-3}}{8.31 \times 298}$$
 or $\frac{0.134}{24.8}$ (1)

 $= 0.0054 \text{ mol in } 200 \text{ cm}^3$

Hence
$$[H_2CO_3] = 0.027 \text{ mol dm}^{-3}$$
 (mark consequential on moles of CO_2) (1)

$$[\mathrm{H}^{+}] = \sqrt{4.0 \times 10^{-7} \times 0.027} = 1.04 \times 10^{-4} \,(\mathrm{mol}\,\mathrm{dm}^{-3}) \quad (mark \ consequential) \tag{1}$$

$$pH = 3.9 \text{ to } 4.1 \qquad (allow consequential to [H+]) \tag{1}$$

(ii)
$$\begin{pmatrix} K_1 = \frac{\left[H^+\right]\left[HCO_3^-\right]}{\left[H_2CO_3\right]} \text{ hence} \end{pmatrix} \frac{\left[HCO_3^-\right]}{\left[H_2CO_3\right]} = \frac{K_1}{\left[H^+\right]}$$
 (1)
 $\frac{\left[HCO_3^-\right]}{\left[H_2CO_3\right]} = \frac{4.0 \times 10^{-7}}{10^{-7.4}} = 9.7 \text{ to } 10.3$ (this scores 2) (1)

6

- Hence most CO_2 in blood, existing as H_2CO_3 , is converted into HCO_3^{-1} (1) 3
- *NB* Allow equilibrium displaced to the right or CO_2 (aq) / H_2CO_3 dissociates
- (iii) HCO_3^{-} must be partially neutralised by NaOH

$$K_{2} = \frac{\left[H^{+}\right]\left[CO_{3}^{2^{-}}\right]}{\left[HCO_{3}^{-}\right]} \quad \text{or} \quad \frac{\left[CO_{3}^{2^{-}}\right]}{\left[HCO_{3}^{-}\right]} = \frac{K_{2}}{\left[H^{+}\right]} \tag{1}$$

$$\frac{\left[\text{CO}_{3}^{2^{-}}\right]}{\left[\text{HCO}_{3}^{-}\right]} = \frac{4.8 \times 10^{-11}}{10^{-10}} = 0.48 \quad (this \ scores \ 2) \tag{1}$$

$$HCO_3^- + OH^- \longrightarrow H_2O + CO_3^{2-}$$
 assume x mol NaOH added (1)

After reaction:
$$(0.2 - x) \mod x \mod (1)$$

Hence,
$$\frac{x}{0.2 - x} = 0.48$$
 and $x = 0.065$ mol (1)

Hence mass NaOH =
$$0.065 \times 40 = 2.6(g)$$
 (1)

(a) (i)	$\mathbf{A} = \operatorname{CuCl}_2 \text{ or } [\operatorname{Cu}(\operatorname{H}_2\operatorname{O})_6]^{2+} 2\operatorname{Cl}^-$ $\mathbf{B} = [\operatorname{CuCl}_4]^{2-}$ $\mathbf{C} = \operatorname{CuCl} \text{ or } \operatorname{Cu}_2\operatorname{SO}_4$		(1) (1) (1)
	$\mathbf{D} = \left[\mathrm{Cu}(\mathrm{NH}_3)_2 \right]^+$		(1)
	$\mathbf{E} = Cu(OH)_2$ or $Cu(OH)_2 x H_2 O$ where $x = 0$	to 4	(1)
	$\mathbf{F} = [Cu(NH_3)_4(H_2O)_2]^{2+}$		(1)
	B is tetrahedral stated or sketched (allow only (allow names for A to F)	if B correct)	(1) 7
(ii)	$SO_2 + 2H_2O \longrightarrow SO_4^{2-} + 4H^+ + 2e^-$ $2Cw^{2+} + 2CI_7 + 2U_1O_1 + SO_2 = SO_4^{2-}$	$-411^{+} + 2C_{2}C_{1}$	(1)
	or $2[CuCl_4]^{2-} + 2H_2O + SO_2 \longrightarrow SO_4^{2-}$	$+ 4H^{+} + 2CuCl + 6Cl^{-}$	(1) 2
(iii)	Air oxidises [Cu(I) back to Cu(II)]	4 • • •	(1)
	Cu ^{$-1s^{-}2s^{-}2p^{-}3s^{-}3p^{-}3d^{+}$ or full <i>d</i> sub-shell/ Energy required to excite an electron is outside}	block range of (visible) light	(1)
	or d–d transitions not possible		(1)
			3
(b)(i)	Uses data to deduce that $\mathbf{J} = \text{HClO}_3$	process	(1) (1)
	(allow process mark for dividing by A_v)	Tormuta	(1)
	$\begin{array}{rcl} \text{KClO}_3 + \text{H}_2\text{SO}_4 \longrightarrow & \text{KHSO}_4 + \text{HClO}_3 \\ \text{3HClO}_3 \longrightarrow & 2\text{ClO}_2 + \text{HClO}_4 + \text{H}_2\text{O} \end{array}$	species	(1) (1)
	(allow ionic equations)	balance	(1) 5
(ii)	$5Fe^{2+} + ClO_2 + 4H^+ \longrightarrow 5Fe^{3+} + Cl^- + 2H_2O$	species balance	(1) (1)
		culuite	(1)
	$5H_2S + 2CIO_2 \longrightarrow 5S + 2H^2 + 2CI^2 + 4H_2O$ (allow equations with S ₂ etc)	species balance	(1) (1)
			4
NB	The 'species' marks may be obtained from the e	quations below	
	$CIO_{2} + 4H^{+} + 5e^{-} \longrightarrow CI^{-} + 2H_{2}O$ $Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$ $H_{2}S \longrightarrow S + 2H^{+} + 2e^{-}$		
(iii)	\mathbf{K} does not contain Cl^- ions		(1)
	$\mathbf{K} = \text{NaClO}_2 \text{ (fits 90.5)} \text{ (scores 2)}$)	(1)
	$Na_2O_2 + 2CIO_2 \longrightarrow 2NaCIO_2 + O_2$		(1)
	Disproportionation: 1:2 ratio of CI: other CI spo	ecies deduced from data	(1)
	$3NaClO_2 \longrightarrow NaCl + 2NaClO_3$	species	(1)

balance

(1)

(c)(i)	Oxide deduced to be BaO_2 $BaO_2 + H_2SO_4 \longrightarrow BaSO_4 + H_2O_2$	(1) (1)
	BaSO ₄ insoluble <i>(allow if state symbol given in an equation)</i> Layer of BaSO ₄ coats solid BaO ₂ and protects it	(1) (1) 4
(ii)	H ₂ O ₂ reduces KMnO ₄ or MnO ₄ ⁻ H ₂ O ₂ \longrightarrow 2H ⁺ + O ₂ + 2e ⁻ Oxidation state/number oxygen -1 \rightarrow 0 or manganese 7 \rightarrow 2	(1) (1) (1)
	$MnO_{4}^{-} + 8H^{+} + 5e^{-} \longrightarrow Mn^{2+} + 4H_{2}O$ $2MnO_{4}^{-} + 5H_{2}O_{2} + 6H^{+} \longrightarrow 2Mn^{2+} + 5O_{2} + 8H_{2}O$	(1) (1)
	H_2O_2 oxidises KI or I [−] $H_2O_2 + 2H^+ + 2e^- \longrightarrow 2H_2O$ Oxidation state/number oxygen $-1 \rightarrow -2$ or iodine $-1 \rightarrow 0$	(1) (1) (1)
	$2I^{-} \longrightarrow I_{2} + 2e^{-}$ $H_{2}O_{2} + 2I^{-} + 2H^{+} \longrightarrow I_{2} + 2H_{2}O$	(1) (1) Max 9

(a)(i)	In CH ₃ Cl the C δ or has an electror	+ (is subject n deficient C	o nucleophilic attack/substitutio	n) ((1)
	In C ₆ H ₅ Cl, π clou or C – Cl bond st	id or electron cronger or ext	rich ring (repels nucleophile) ended delocalisation includes Cl	((1)
(ii)	С	Н	Cl		Z
	52.2	3.72	44.1		
	12	1	35.5		
	1 25	2 72	1.04	((1)

4.35 3.72 1.24(1) Hence, 3.50 2.99 1 (1)

Therefore C₇H₆Cl₂

1.00 g gives
$$0.892$$
 g AgCl = $\frac{0.892}{143.5}$ = 6.216 × 10⁻³ mol (1)

161 g gives 1 mol AgCl or 1 g contains 6.216×10^{-3} mol of chlorine (1)

Mechanism: $HO \subseteq CH_2 - Cl$ $HO - CH_2$

Allow full marks for an $S_N 1$ mechanism NB

Allow max 2 for two correct arrows if an aliphatic compound used NB

Name: nucleophilic substitution

11

(1)

(1)

(b)(i) P is CH₃ $CH_3 - CH_2 CH_3$ OH

> Reaction with hot conc. H₂SO₄ gives CH_3 CH_3 $CH_3 \qquad CH_3 \\ | \\ CH_2 = C - CH_2CH_3 \quad (1) \quad \text{and} \quad CH_3 - C = CHCH_3$ (1) and $3, 3, 1, 3 \text{ or } 6, 1, 3 \therefore \mathbf{R}$ (1) nmr peak areas $2, 3, 2, 3 \therefore \mathbf{Q}$ (1) (or fits data)

- NB If **P** is wrong up to 4 marks can be scored consequentially if TWO correct alkene products given.
- *NB* If alcohol **P** incorrect, **Q** can be identified using given nmr data hence the following 9 marks can be scored.

Compound ${\bf Q}$ with DBr

S formed via a primary carbocation hence a minor product or **T** formed via a tertiary carbocation hence a major product (1)

NB Penalise 1 if labels of **T** and **S** reversed

Other products formed when **T** reacts with KOH(alc)

NB CE if DBr removed from **S**, lose last 6 marks

(c) Isomers of $C_3H_5Cl_3$

$Cl Cl - C - CH_2CH_3 Cl$	$CI - CI$ $ $ $CI - C - C^* - CH_3$ $ $ $H H$	* optical isomer (1)
1,1,1-	1,1,2-	
$Cl Cl \\ \\ Cl - C - CH_2 - CH_2 \\ \\ H$	$\begin{array}{cccc} Cl & Cl & Cl \\ & & \\ H_2C - C - CH_2 \\ \\ H \end{array}$	$CI CI H_2C - C - CH_3 CI$
1.1.3-	1.2.3-	1.2.2-

Marks: three correct (1); four correct (2); five correct (3)

NB Apply list principle if more than five isomers given

C ₃ H ₅ Cl ₃ : m/2	z valu	es f	or m	olec	ular	ion	peak	S
41 +	35	or	35	or	35	or	37	
	35		35		37		37	
	35		37		37		37	
m/z	146		148		150		152	

Marks: four correct m/z values (1); four peaks (1)

m/z		Relative abundances	Ratio %	Allow %
146	35 35 35	$\frac{3}{4} \times \frac{3}{4} \times \frac{3}{4} = \frac{27}{4^3}$	27 ~42	27~67
148	35 35 37	$\frac{3}{4} \times \frac{3}{4} \times \frac{1}{4} \times 3 = \frac{27}{4^3}$	27 ~42	9~23
150	35 37 37	$\frac{3}{4} \times \frac{1}{4} \times \frac{1}{4} \times 3 = \frac{9}{4^3}$	9 ~14	3 ~7.5
152	37 37 37	$\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = \frac{1}{4^3}$	1~1.6(2)	1~2.5 (1)

2

2

4

Question 5 (a)

Period	Bonding	Physical property	Chemical property
Trend	Ionic to covalent	Melting point high to	Reaction with water:
		low	solution pH $7^{>}$ 0
			or more acidic
			or reaction more violent
	B1		C1
		P1	
Explanation	Change in ionisation	Electrostatic attraction	Hydrolysis reactions for
	energy	strong	ionic compounds
	or electronegativity		or dissolve
	B2	P2	C2
Explanation	Atomic radius decreases	Intermolecular forces	Hydrolysis for covalent
	or nuclear charge	weak	compounds
	increases	or van der Waals	
			C3
	B3	P3	
Example 1: Group 1 or 2	Ionic	High melting point	pH ~ 7
	B4	P4	C4
Example 2: Group 3	Polar covalent	Sublimes	pH ~ 3
	B5	P5	C5
Example 3: Group 4, 5 or 6	Covalent	Low melting point	pH ~ 1
	B6	P6	C6

Group	Bonding	Physical property	Chemical property
Trend	Covalent to ionic	Low for head element	Acidic to neutral
	B 7	P7	C7
Explanation	Atomic/ionic radius	Head element has partial	Hydrolysis for head
	or electronegativity	covalent bonding	element
	B8	P8	C8
Explanation	Charge density		
	or polarisability		
	B9		
Example	Li/Na		
	or Be/Mg		
	or B or Al/Tl		
	B10		

Question 5 (b)

Oxidatio	on states		
TE	electrons lost from outer s sub-shell	(1)	
	electrons then lost from d sub-shell	(1)	
	ionisation energies can be achieved or low	(1)	
	ions stabilised by complex formation	(1)	
		(1)	
Non-IE	electrons lost/gained to achieve a noble gas configuration	(1)	
	$\sum I.E$ provided by lattice or hydration energy or bond energies	(1)	
	further electron lost from an inner shell	(1)	
	much larger increase in energy required	(1)	
Allow an	ny six correct statements		
Non-tran	sition element illustration:		
	e.g. nitrogen in N_2O : NO: HNO ₂ : NO ₂ : HNO ₃		
	or $Cl_2 + H_2O \longrightarrow HClO + HCl$	(1)	
		(-)	7
NB	A minimum of two oxidation states given or two compounds in different oxidation states		
Coloure	d ions		
TE	incomplete d sub-shell	(1)	
	d sub-shell energy split	à	
	(visible) light energy absorbed	(1)	
	electrons promoted to higher energies	(1)	
	colour seen due to energy not absorbed or reflected	(1)	
	colour seen due to energy not absorbed of reflected	(1)	
Non-TE	electrons in s or p sub-shells	(1)	
	energy to promote electrons outside visible region	(1)	
	large amount of energy needed for electron promotion	(1)	
Allow an	ny six correct statements		
Non-tran	sition element illustration.		
1 ton-tran	$e \sigma$ PbO: PbS: PbI ₂ : NO ₂ : KI ₂	(1)	
	$c.g. 100, 100, 100_2, 100_2, 100_2$	(1)	7
Complex	z ions		
TF	vacant (d) orbitals	(1)	
1L	can accent electron pairs from ligands	(1)	
		(1)	
Non-TE	no low energy vacant orbitals or cannot use d orbitals	(1)	
	bonds not formed	(1)	
Non tran	sition element illustration.		
inon-tran	$e \sigma S \Omega^{2-} \cdot A [CL^{-} \cdot BH^{-} \cdot C \Omega^{2-} \cdot [A](H_{2}\Omega)_{2}]^{3+}$	(1)	
	$(120)_{6}$	(1)	5
			5

Catalysts

TE	good adsorption properties	(1)
	reactions involved transfer electrons between reactants	(1)
	variable oxidation states of facilitate electron transfer	(1)
Non-TE	poor adsorption properties	(1)
	fixed oxidation states	(1)
	electrons would need to enter higher shell	(1)
	not energetically advantageous	(1)
Allow an	ny five correct statements	
Non-tran	sition element illustration:	
	e.g. AlCl ₃ ; BCl ₃ in Friedel–Craft reactions	(1)
NB	A reaction with the catalyst must be given	0

Do not allow just an enzyme