

Advanced Extension Award

Chemistry

6821

Copyright ${ }^{\odot} 2003$ AQA and its licensors. All rights reserved.

Question 1

(a) Same type of bonds broken and made or $\mathrm{C}-\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$

Same number of bonds broken and made or $\mathrm{C}-\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$
Strained/stressed ring (not stretched)
or repulsion between bonding electron pairs
Less energy required to break bonds or more stable product or ring unstable or more energy given out when bonds made than used when bonds broken
(b)

Or

NB Mark four correct arrows
Allow answers in words
Three marks can be scored if water used rather than ethanol: i.e. lose third mark
(c)

NB $\quad C E=O$ if \boldsymbol{X} is incorrect in part (d)
(e) Compound $\mathbf{Y} \quad \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OMgCl}$

Product: $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}$ or name (not consequential to an incorrect \boldsymbol{Y})

Question 2

(a)(i) $\begin{array}{ll}\text { Graph: axes labelled (and suitable scale) } \\ \text { points plotted correctly } \\ \text { smooth curve through all points }\end{array}$
$N B \quad C E=0$ if scale non-linear

Marks to be used on scripts
2(a)(i) Labelled Axes (both) A $\boldsymbol{\checkmark}$
Point P \downarrow
Curve $\quad \mathrm{C} \sqrt{ }$
(a)(ii) Tangent T
(b)(ii) Shape $\mathrm{S} \boldsymbol{\checkmark} \downarrow$

Indicate errors with \boldsymbol{X} e.g. (a)(i) A P C (b)(ii) $S \boldsymbol{X} \boldsymbol{\gamma} \boldsymbol{X}$
(ii) Initial rate $\sim \frac{0.005}{14}(1)=(2.4$ to 4.1$) 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$

Maximum rate $\sim \frac{0.014}{18}=(6.7$ to 8.2$) 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$
NB Method can be scored in either rate calculation; check for this on the graph
Tangent shown on graph
Reaction gets faster (not slope increases) or starts slower
Due to autocatalysis or catalysed by a product or by H^{+}
Rate slows down again or curve flattens out
As \mathbf{W} decreases (towards zero) or used up or reactants used up
Maximum rate tangent can be drawn accurately
Initial rate tangent; position after origin uncertain or greater error with smaller range or gradient/rate is changing
(b)(i) Order with respect to $\mathbf{W}=2$

At $\mathrm{pH}=3,\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ and
at $\mathrm{pH}=2.82,\left[\mathrm{H}^{+}\right]=1.5 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$
Hence order with respect to $\left[\mathrm{H}^{+}\right]=1$
Rate $=k[\mathbf{W}]^{2}\left[\mathrm{H}^{+}\right] \quad$ (this scores 4 marks)
$k=\frac{8.8 \times 10^{-5}}{0.04^{2} \times 10^{-3}}=55 \mathrm{~mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$

NB Value of knot marked consequentially to incorrect orders
Working does not have to be shown
(ii) Initial rate $=k \times 0.1^{2} \times 10^{-2.9}=6.9 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$

NB Marked consequentially to incorrect k but not to an incorrect rate equation
Graph: starts steeper
crosses
approaches final $[\mathbf{X}]=0.10$
Differences: as $\left[\mathrm{H}^{+}\right]$present at the start, initial rate higher
rate does not increase as $\left[\mathrm{H}^{+}\right]$constant or solution buffered
Similarity: graph finishes at same asymptote to $[\mathbf{X}]$ (must be stated)

NB If own incorrect lower initial rate used score max 3 for
graph less steep (1); approaches final $[\boldsymbol{X}]=0.10$ (1) asymptote to $[\boldsymbol{X}]$ stated (1)
(c)(i) $\quad K_{1}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}$
(But $\left[\mathrm{H}^{+}\right] \approx\left[\mathrm{HCO}_{3}^{-}\right]$hence) $\left[\mathrm{H}^{+}\right]=\sqrt{K_{1}\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]} \quad$ (this scores 2)
Moles $\mathrm{CO}_{2}=\frac{p V}{\mathrm{R} T}=\frac{100 \times 10^{3} \times 0.134 \times 10^{-3}}{8.31 \times 298} \quad$ or $\frac{0.134}{24.8}$
$=0.0054 \mathrm{~mol}$ in $200 \mathrm{~cm}^{3}$
Hence $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=0.027 \mathrm{~mol} \mathrm{dm}^{-3} \quad$ ((ark consequential on moles of CO_{2})

$$
\begin{align*}
& {\left[\mathrm{H}^{+}\right]=\sqrt{4.0 \times 10^{-7} \times 0.027}=1.04 \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \quad \text { (mark consequential) }} \tag{1}\\
& \left.\mathrm{pH}=3.9 \text { to } 4.1 \quad \text { (allow consequential to }\left[\mathrm{H}^{+}\right]\right) \tag{1}
\end{align*}
$$

(ii) $\quad\left(K_{1}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}\right.$ hence $) \frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=\frac{K_{1}}{\left[\mathrm{H}^{+}\right]}$
$\frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=\frac{4.0 \times 10^{-7}}{10^{-7.4}}=9.7$ to $10.3 \quad$ (this scores 2)

Hence most CO_{2} in blood, existing as $\mathrm{H}_{2} \mathrm{CO}_{3}$, is converted into HCO_{3}
NB Allow equilibrium displaced to the right or $\mathrm{CO}_{2}(\mathrm{aq}) / \mathrm{H}_{2} \mathrm{CO}_{3}$ dissociates
(iii) HCO_{3}^{-}must be partially neutralised by NaOH

$$
\begin{align*}
& K_{2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CO}_{3}^{2-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]} \text {or } \frac{\left[\mathrm{CO}_{3}^{2-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}=\frac{K_{2}}{\left[\mathrm{H}^{+}\right]} \tag{1}\\
& \frac{\left[\mathrm{CO}_{3}^{2-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}=\frac{4.8 \times 10^{-11}}{10^{-10}}=0.48 \quad(\text { this } \text { scores } 2) \tag{1}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{3}^{2-} \text { assume } x \text { mol } \mathrm{NaOH} \text { added } \tag{1}
\end{equation*}
$$

After reaction: $\quad(0.2-x) \mathrm{mol}$ x mol

Hence, $\frac{x}{0.2-x}=0.48$ and $x=0.065 \mathrm{~mol}$
Hence mass $\mathrm{NaOH}=0.065 \times 40=2.6(\mathrm{~g})$

Question 3

(a) (i) $\quad \mathbf{A}=\mathrm{CuCl}_{2}$ or $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} 2 \mathrm{Cl}^{-}$
$\mathbf{B}=\left[\mathrm{CuCl}_{4}\right]^{2-}$
$\mathbf{C}=\mathrm{CuCl}$ or $\mathrm{Cu}_{2} \mathrm{SO}_{4}$
$\mathbf{D}=\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$
$\mathbf{E}=\mathrm{Cu}(\mathrm{OH})_{2}$ or $\mathrm{Cu}(\mathrm{OH})_{2} x \mathrm{H}_{2} \mathrm{O}$ where $x=0$ to 4
$\mathbf{F}=\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$
B is tetrahedral stated or sketched (allow only if \boldsymbol{B} correct)
(allow names for \boldsymbol{A} to \boldsymbol{F})
(ii) $\quad \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
$2 \mathrm{Cu}^{2+}+2 \mathrm{Cl}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2} \longrightarrow \mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+2 \mathrm{CuCl}$
or $2\left[\mathrm{CuCl}_{4}\right]^{2-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2} \longrightarrow \mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+2 \mathrm{CuCl}+6 \mathrm{Cl}^{-}$
(iii) Air oxidises $[\mathrm{Cu}(\mathrm{I})$ back to $\mathrm{Cu}(\mathrm{II})]$
$\mathrm{Cu}^{+} 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10}$ or full d sub-shell/block
Energy required to excite an electron is outside range of (visible) light or d-d transitions not possible
(b)(i) Uses data to deduce that $\mathbf{J}=\mathrm{HClO}_{3}$
process
formula
(allow process mark for dividing by A_{r})
$\begin{array}{ll} \\ \begin{array}{l}3 \mathrm{HClO}_{3} \\ \text { (allow ionic equations) }\end{array} \mathrm{KClO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow & \mathrm{ClO}_{2}\end{array} \mathrm{HClO}_{4}+\mathrm{HCO}_{2}+\mathrm{HClO}_{3} \mathrm{O} \quad \begin{aligned} & \text { species } \\ & \text { balance }\end{aligned}$
(ii) $\quad 5 \mathrm{Fe}^{2+}+\mathrm{ClO}_{2}+4 \mathrm{H}^{+} \longrightarrow 5 \mathrm{Fe}^{3+}+\mathrm{Cl}^{-}+2 \mathrm{H}_{2} \mathrm{O} \quad$ species
balance
$5 \mathrm{H}_{2} \mathrm{~S}+2 \mathrm{ClO}_{2} \longrightarrow 5 \mathrm{~S}+2 \mathrm{H}^{+}+2 \mathrm{Cl}^{-}+4 \mathrm{H}_{2} \mathrm{O}$
species
(allow equations with S_{8} etc)
balance

NB The 'species' marks may be obtained from the equations below
$\mathrm{ClO}_{2}+4 \mathrm{H}^{+}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Cl}^{-}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}$
$\mathrm{H}_{2} \mathrm{~S} \longrightarrow \mathrm{~S}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
(iii) $\quad \mathbf{K}$ does not contain Cl^{-}ions
$\mathbf{K}=\mathrm{NaClO}_{2}$ (fits 90.5)
(scores 2)
$\mathrm{Na}_{2} \mathrm{O}_{2}+2 \mathrm{ClO}_{2} \longrightarrow 2 \mathrm{NaClO}_{2}+\mathrm{O}_{2}$
Disproportionation: 1:2 ratio of Cl^{-}: other Cl species deduced from data
$3 \mathrm{NaClO}_{2} \longrightarrow \mathrm{NaCl}+2 \mathrm{NaClO}_{3}$
species
balance
(c)(i) Oxide deduced to be BaO_{2}
$\mathrm{BaO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{BaSO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2}$
BaSO_{4} insoluble (allow if state symbol given in an equation)
Layer of BaSO_{4} coats solid BaO_{2} and protects it
(ii) $\quad \mathrm{H}_{2} \mathrm{O}_{2}$ reduces KMnO_{4} or MnO_{4}^{-}
$\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{H}^{+}+\mathrm{O}_{2}+2 \mathrm{e}^{-}$
Oxidation state/number oxygen $-1 \rightarrow 0$ or manganese $7 \rightarrow 2$
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{O}_{2}+6 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{O}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{O}_{2}$ oxidises KI or I^{-}
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}$
Oxidation state/number oxygen $-1 \rightarrow-2$ or iodine $-1 \rightarrow 0$

$$
\begin{align*}
& 2 \mathrm{I}^{-} \longrightarrow \mathrm{I}_{2}+2 \mathrm{e}^{-} \tag{1}\\
& \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{I}^{-}+2 \mathrm{H}^{+} \longrightarrow \mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}
\end{align*}
$$

Question 4

(a)(i) In $\mathrm{CH}_{3} \mathrm{Cl}$ the $\mathrm{C} \delta+$ (is subject to nucleophilic attack/substitution) or has an electron deficient C
In $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}, \pi$ cloud or electron rich ring (repels nucleophile) or $\mathrm{C}-\mathrm{Cl}$ bond stronger or extended delocalisation includes Cl

C	H	Cl
$\frac{52.2}{12}$	$\frac{3.72}{1}$	$\frac{44.1}{35.5}$
4.35	3.72	1.24
Hence, 3.50	2.99	1
Therefore $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{Cl}_{2}$		

Therefore $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{Cl}_{2}$
1.00 g gives $0.892 \mathrm{~g} \mathrm{AgCl}=\frac{0.892}{143.5}=6.216 \times 10^{-3} \mathrm{~mol}$

161 g gives 1 mol AgCl or 1 g contains $6.216 \times 10^{-3} \mathrm{~mol}$ of chlorine

(1) (1)
(1)

Mechanism: HO^{-}

$N B \quad$ Allow full marks for an $S_{N} 1$ mechanism
NB Allow max 2 for two correct arrows if an aliphatic compound used

Name: nucleophilic substitution
(b)(i) $\quad \mathbf{P}$ is

Reaction with hot conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives

(1) and

$\begin{array}{cc}\text { nmr peak areas } \\ & \begin{array}{l}2,3,2,3 \therefore \mathbf{Q} \text { (1) (or fits data) }\end{array}\end{array}$
NB If \boldsymbol{P} is wrong up to 4 marks can be scored consequentially if TWO correct alkene products given.
NB If alcohol \boldsymbol{P} incorrect, \boldsymbol{Q} can be identified using given nmr data hence the following 9 marks can be scored.

Compound \mathbf{Q} with DBr

S formed via a primary carbocation hence a minor product or \mathbf{T} formed via a tertiary carbocation hence a major product (1)

NB Penalise 1 if labels of \boldsymbol{T} and \boldsymbol{S} reversed
$N B \quad C E$ if $D B r$ removed from \boldsymbol{S}, lose last 6 marks
Other products formed when \mathbf{T} reacts with $\mathrm{KOH}(\mathrm{alc})$

nmr peak areas

$$
\begin{aligned}
& 1,3,2,3 \\
& \mathbf{V} \text { or } \mathbf{W}
\end{aligned}
$$

$2,2,2,3 \therefore \mathbf{U}$ (1) or fits data given

2, 3, 1, 3 (1)
\mathbf{V} or \mathbf{W}
14
(ii)

(c) Isomers of $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}_{3}$

1,1,1-

1,1,2-

* optical isomer (1)

1,2,2-

Marks: three correct (1); four correct (2); five correct (3)
NB Apply list principle if more than five isomers given
$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}_{3}: m / z$ values for molecular ion peaks

$41+$	35	or 35	or 35	or	37	
	35	35		37		37
	35	37		37	37	
m / z	146	148	150	152		

Marks: four correct m / z values (1); four peaks (1)

m / z		Relative abundances	Ratio $\%$	Allow $\%$
146	353535	$\frac{3}{4} \times \frac{3}{4} \times \frac{3}{4}=\frac{27}{4^{3}}$	$27 \sim 42$	$27 \sim 67$
148	353537	$\frac{3}{4} \times \frac{3}{4} \times \frac{1}{4} \times 3=\frac{27}{4^{3}}$	$27 \sim 42$	$9 \sim 23$
150	353737	$\frac{3}{4} \times \frac{1}{4} \times \frac{1}{4} \times 3=\frac{9}{4^{3}}$	$9 \sim 14$	$3 \sim 7.5$
152	373737	$\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}=\frac{1}{4^{3}}$	$1 \sim 1.6(2)$	$1 \sim 2.5(1)$

Question 5 (a)

Period	Bonding	Physical property	$\begin{array}{c}\text { Chemical property }\end{array}$
Trend	Ionic to covalent	$\begin{array}{l}\text { Melting point high to } \\ \text { low }\end{array}$	$\begin{array}{l}\text { Reaction with water: } \\ \text { solution pH 7 }\end{array}$
or more acidic			
or reaction more violent			
C1			

Group	Bonding	Physical property	Chemical property
Trend	Covalent to ionic B7	Low for head element P7	Acidic to neutral C7
Explanation	Atomic/ionic radius or electronegativity B8	Head element has partial covalent bonding P8	Hydrolysis for head element
Explanation	Charge density or polarisability B9	C8	
Example	$\mathrm{Li} / \mathrm{Na}$ Ba or $\mathrm{Be} / \mathrm{Mg}$ or B or Al/Tl $\mathbf{B 1 0}$		

Question 5 (b)

Oxidation states

TE	electrons lost from outer s sub-shell
	electrons then lost from d sub-shell
ionisation energies can be achieved or low	
	ions stabilised by complex formation

ionisation energies can be achieved or low
ions stabilised by complex formation
Non-TE electrons lost/gained to achieve a noble gas configuration
\sum I.E provided by lattice or hydration energy or bond energies
further electron lost from an inner shell
much larger increase in energy required

Allow any six correct statements

Non-transition element illustration:
e.g. nitrogen in $\mathrm{N}_{2} \mathrm{O} ; \mathrm{NO} ; \mathrm{HNO}_{2} ; \mathrm{NO}_{2} ; \mathrm{HNO}_{3}$
or $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HClO}+\mathrm{HCl}$

NB A minimum of two oxidation states given or two compounds in different oxidation states

Coloured ions

TE incomplete d sub-shell
d sub-shell energy split
(visible) light energy absorbed
electrons promoted to higher energies
colour seen due to energy not absorbed or reflected
Non-TE electrons in s or p sub-shells
energy to promote electrons outside visible region
large amount of energy needed for electron promotion
Allow any six correct statements
Non-transition element illustration:
e.g. $\mathrm{PbO} ; \mathrm{PbS} ; \mathrm{PbI}_{2} ; \mathrm{NO}_{2} ; \mathrm{KI}_{3}$

Complex ions

TE vacant (d) orbitals
can accept electron pairs from ligands
Non-TE no low energy vacant orbitals or cannot use d orbitals
bonds not formed
Non-transition element illustration:

$$
\begin{equation*}
\text { e.g. } \mathrm{SO}_{4}^{2-} ; \mathrm{AlCl}_{4}^{-} ; \mathrm{BH}_{4}^{-} ; \mathrm{CO}_{3}^{2-} ;\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \tag{1}
\end{equation*}
$$

Catalysts
TE good adsorption properties (1)
reactions involved transfer electrons between reactants (1)
variable oxidation states of facilitate electron transfer (1)
Non-TE poor adsorption properties (1)
fixed oxidation states (1)
electrons would need to enter higher shell (1)
not energetically advantageous (1)
Allow any five correct statements
Non-transition element illustration:
e.g. $\mathrm{AlCl}_{3} ; \mathrm{BCl}_{3}$ in Friedel-Craft reactions
NB A reaction with the catalyst must be given Do not allow just an enzyme

