Answers

ACCA Certified Accounting Technician Examination - Paper T4

Accounting for Costs

Section A

1	D
2	D
3	B
4	C
5	B
6	A
7	C
8	D
9	A
10	D
11	B
12	C
13	D
14	C
15	A
16	B
17	A
18	C
19	C
20	B

Workings to computational MCQs:
5 (\$52,000 $\div 5,000$ units $)+\{[(\$ 760,000-(50,000$ units $\times \$ 10 \cdot 40 /$ unit $)] \div 54,000$ units $\}$

7 [(8 units $\times \$ 260 / u n i t)+(12$ units $\times \$ 270 / u n i t)]$
$8 \quad[(3,400 \mathrm{~kg}+600 \mathrm{~kg}) \div 2]$
$11[(\$ 44,210 \times 1 \cdot 4)+\$ 3,190]$
$12\{[\$ 4,250 \div(420$ units good output +20 units abnormal loss $)] \times 20$ units $\}$
$14\{\$ 71,628 \div[9,000+(1,000 \times 0 \cdot 4)$ units $]\}$
$16[(\$ 39,420+\$ 11,880) \div 5,400$ units $]$
$20\{11 \%+[4 \% \times(\$ 35,170 / \$ 29,130)]\}$

Section B

1 (a) Absorption costing profit statement

	\$	\$	
Sales		162,400	(11,200 units at \$14.50)
Production cost of sales:			
Cost of production	98,040		(11,400 units at \$8.60)
less Closing inventory	1,720		(200 units at \$8.60)
		96,320	(11,200 units at \$8.60)
Gross profit		66,080	(11,200 units at \$5.90)
Selling \& administration costs		43,680	(11,200 units at \$3.90)
Net profit		\$22,400	(11,200 units at \$2.00)

(b) Marginal costing
(i) Total contribution

Contribution per unit $=$ selling price - variable costs $=\$ 14.50-\$ 5.80=\$ 8.70$
Total contribution $=$ contribution/unit \times sales units $=\$ 8 \cdot 70 /$ unit $\times 11,200$ units $=\$ 97,440$
or Contribution/sales (C/S) ratio $=[(\$ 8 \cdot 70 \div \$ 14 \cdot 50) \times 100]=60 \%$
Total contribution $=$ sales revenue $\times C / S$ ratio $=\$ 162,400 \times 0 \cdot 6=\$ 97,440$
(ii) Total net profit

Total fixed costs $=(\$ 3 \cdot 80 /$ unit $\times 11,400$ units $)+(\$ 2 \cdot 90 /$ unit $\times 11,200$ units $)$
$=\$ 43,320+\$ 32,480=\$ 75,800$
Total net profit $=$ contribution - fixed costs $=\$ 97,440-\$ 75,800=\$ 21,640$
(iii) Break-even sales revenue

Break-even sales revenue $=$ total fixed costs \times (selling price \div contribution/unit)
$=\$ 75,800 \times(\$ 14.50 \div \$ 8 \cdot 70)=\$ 126,333$
or Break-even sales revenue $=$ total fixed costs $\div \mathrm{C} / \mathrm{S}$ ratio $=\$ 75,800 \div 0 \cdot 6=\$ 126,333$
(c) Difference in net profit

Profit differs because of the inclusion of fixed production overheads in inventory valuation using absorption costing. 200 units inventory increase $\times \$ 3.80$ per unit fixed production overhead
$=\$ 760$ profit difference $(\$ 22,400-\$ 21,640)$

2 Transport company
(a) Total cost per coach on each route

	Route A \$		Route B \$
Drivers' wages	34,320	(W1)	34,320
Fuel and maintenance	46,818	(W2)	52,949
Fixed costs:			
Vehicle tax \& insurance	3,870		3,870
Apportioned costs	10,880	(W4)	10,880
	\$95,888		\$102,019

(b) Cost per kilometre on each route
Total cost
\div total kilometres
Cost per kilometre

Route A
$\$ 95,888$
$52,416(W 5)$
$\$ 1 \cdot 8294$

[^0](c) Profit per kilometre on each route

	Route A \$ per km		Route B \$ per km	
Revenue	2.0986	(W7)	1.6211	(W8)
Costs	1.8294		1.7210	
Profit/(loss)	\$0.2692	per km	\$(0.0999)	per km

Workings
W1 \$110/coach $\times 6$ days/week $\times 52$ weeks/year
W2 \$0.8932/km $\times 12$ journeys/day $\times 14$ km/journey $\times 6$ days/week $\times 52$ weeks/year
W3 $\$ 0.8932 / \mathrm{km} \times 10$ journeys/day $\times 19 \mathrm{~km} /$ journey $\times 6$ days/week $\times 52$ weeks/year
W4 $\$ 21,760 /$ route $\div 2$ coaches/route
W5 12 journeys/day $\times 14$ km/journey $\times 6$ days/week $\times 52$ weeks/year
W6 10 journeys/day $\times 19 \mathrm{~km} / \mathrm{journey} \times 6$ days/week $\times 52$ weeks/year
W7 13 passengers/journey $\times \$ 2 \cdot 26 /$ passenger $\div 14 \mathrm{~km} / \mathrm{journey}$
W8 11 passengers/journey $\times \$ 2 \cdot 80 /$ passenger $\div 19 \mathrm{~km} / \mathrm{journey}$

3 (a) Overhead over/under absorption

Cost centre X	
Overhead absorbed	\$29,146 (1,235 machine hours at \$23•60)
Overhead incurred	\$29,609
Overhead under absorbed	\$463
	Cost centre Y
Overhead absorbed	\$53,718 (6,395 labour hours at \$8.40)
Overhead incurred	\$52,567
Overhead over absorbed	\$1,151

(b) Predetermined, as opposed to actual, overhead absorption rates

Advantages:

- enable overheads to be absorbed immediately after production
- easier to estimate product/job costs
- even out fluctuations that would otherwise occur in unit costs if production is uneven

4 (a) Joint costs
$220 \mathrm{~kg} \times \$ 12.00$ per $\mathrm{kg}=\$ 2,640$
Weight of output is the method used to apportion the joint costs
(b) Comments
(i) The loss on an individual joint product is irrelevant to any decision concerning the joint process because the apportionment of the joint costs is arbitrary. The key is whether the process as a whole is profitable. On the basis of the information available, the process is profitable overall and thus should be continued i.e.

	$\$$
Product JP1 $(100 \mathrm{~kg} \times \$ 8.00$ per kg)	800
Product JP2 (120 kg $\times(\$ 2.00)$ per kg $)$	$\frac{(240)}{560}$
Net	

(ii) Product JP1 should be further processed to form Product FP1 because the further processing operation results in an incremental profit i.e.

Incremental revenue $(\$ 25.00-\$ 20.00)$	$\$$ per kg
Incremental costs	5.00
Incremental profit	$\underline{3.50}$
1.50	

ACCA Certified Accounting Technician Examination - Paper T4

Accounting for Costs

Section A 2 marks each question
40
Section B
1 (a) sales
cost of production 1
closing inventory 1
gross profit 2
non-production costs 1
net profit
2
8
(b) (i) contribution per unit
total contribution
(ii) fixed costs total net profit
(iii) b/even sales revenue
(c) explanation (words or figures)

2 (a) drivers' wages
2
fuel
fixed costs
(b) total km
cost per km
(c) revenue per km cost \& profit per kilometre

3 (a) cost centre X - figure 2
cost centre Y - figure
2
cost centre X - ‘under'
cost centre y - 'over'
(b) advantages - 2 for each

4 (a) joint costs method
$\underline{1 / 2} \quad 3$
(b) (i) narrative calculation
(ii) narrative calculation

2
2
2

2
2

6

4
10

[^0]: Route B
 \$102,019
 59,280 (W6)
 \$1•7210

