# Answers

### ACCA Certified Accounting Technician Examination – Paper T4 Accounting for Costs

#### Section A

#### 1 C

2 B

#### 3 B

High-low method:

| £254,554 – 230,485                                                            | £24,069          |
|-------------------------------------------------------------------------------|------------------|
| Variable production costs per unit = $\frac{2234,934}{14,870 - 12,610}$ units | =<br>2,260 units |
| = £10.65 per unit                                                             |                  |

#### 4 A



#### 6 C

Average stock = 1,200 + (2,000  $\div$  2) = 2,200 kg x £1.20 per kg = £2,640 annual stockholding cost

#### 7 B

Wages of distribution staff and sales personnel salaries are not production costs. Productive time of direct operatives is a direct cost.

#### 8 B

Time allowed = 1,065 units x  $(2 \cdot 4 \div 60) = 42 \cdot 6$  hours Bonus =  $(42 \cdot 6 - 37 \cdot 5$  hours) x  $(\pounds 8 \cdot 50 \div 3) = \pounds 14 \cdot 45$ Basic pay =  $37 \cdot 5$  hours at  $\pounds 8 \cdot 50 = \pounds 318 \cdot 75$ Total earnings =  $\pounds 333 \cdot 20$  ( $\pounds 318 \cdot 75 + 14 \cdot 45$ )

#### 9 C

#### 10 D

Absorbed – actual = over/(under) absorbed  $\pounds 125,200 - 126,740 = \pounds 1,540$  under-absorbed

#### 11 D

### 12 B

Decrease in stock = 33,300 - 33,950 units = 650 units x £27.90 per unit = <u>£18,135</u> change in finished goods stock value

#### 13 A

Increase in stock = 97,000 – 96,000 units = 1,000 units x £1·40 per unit =  $\underline{\pounds1,400}$  less profit using marginal costing

#### June 2004 Answers

#### 14 B

Actual loss = 16% (20 – 4) Material input = 6,500 kg  $\div$  (1 – 0.16) = 7,738 kg

#### 15 D

#### 16 D

Sales value of putput: Product A 2,000 kg at £12 = £24,000 Product B 4,000 kg at £18 = £72,000 £96,000 Share of joint process cost – Product B = £30,000 x (72,000 ÷ 96,000)

 $= \frac{\pounds 22,500}{2}$ 

#### 17 B

#### 18 B

Break-even (units) = Fixed cost  $\div$  contribution per unit 24,600 = 123,000  $\div$  contribution per unit

Contribution per unit = £123,000  $\div$  24,600 units = £5.00 per unit

#### 19 C

The consequence of using Material X in the special order is that more of the material will have to be bought, than would otherwise be the case, for its normal business.

#### 20 B

#### Section B

- 1 (a) Re-order level:
  - Re-order level = safety stock + (average usage x lead time) = 500 kg + (400 kg x 2 weeks) =  $\underline{1,300 \text{ kg}}$
  - (b) Cost of issues (using weighted average):

Opening balance = £12.00 per kg (£10,800  $\div$  900 kg) Cost of issue on Day 3, Week 1 = £4,800 (400 x £12.00) New weighted average after receipt on Day 5, Week 1 = £12.40 per kg [(500 kg x £12.00) + £12,600]  $\div$  [(900 kg - 400 kg) + 1,000 kg] Cost of issues on Day 2 & Day 4, Week 2 and Day 3 Week 3 = £9,920 [(260 + 170 + 370) x £12.40] Total cost of four issues = £14,720 (4,800 + 9,920)

or using a tabular format:

| Time           | Rec   | eipts  | Issues |       |        |       | Balance |        |  |  |
|----------------|-------|--------|--------|-------|--------|-------|---------|--------|--|--|
|                | kg    | £      | kg     | £/kg  | £      | kg    | £/kg    | £      |  |  |
| Balance b/f    |       |        |        |       |        | 900   | 12.00   | 10,800 |  |  |
| Week 1:        |       |        | 400    | 12.00 | 4,800  | 500   | 12.00   | 6,000  |  |  |
| Day 3<br>Day 5 | 1,000 | 12,600 | 400    | 12'00 | 4,000  | 1,500 | 12.00   | 18,600 |  |  |
| Week 2:        | 1,000 | 12,000 |        |       |        | 1,000 | 12 40   | 10,000 |  |  |
| Day 2          |       |        | 260    | 12.40 | 3,224  | 1,240 | 12.40   | 15,376 |  |  |
| Day 4          |       |        | 170    | 12.40 | 2,108  | 1,070 | 12.40   | 13,268 |  |  |
| Week 3:        |       |        |        |       |        |       |         |        |  |  |
| Day 3          |       |        | 370    | 12.40 | 4,588  | 700   | 12.40   | 8,680  |  |  |
|                |       |        |        |       | 14,720 |       |         |        |  |  |

(c) Cost of closing stock (using LIFO):

Closing stock = [(900 + 1,000) - (400 + 260 + 170 + 370)] = 700 kg500 kg remaining of opening balance x £12·00/kg = £6,000 + 200 kg remaining of receipt (Day 5, Week 1) x (£12,600 ÷ 1,000 kg) = £2,520 Total = £8,520

#### 2 (a) & (b) Overhead re-apportionment and absorption:

|     |                                                | Pro            |         |         | Service C | ost Centre | Total    |  |
|-----|------------------------------------------------|----------------|---------|---------|-----------|------------|----------|--|
|     |                                                | A              | В       | С       | Х         | Y          |          |  |
|     | Allocated & apportioned (£)<br>Re-apportioned: | 47,566         | 84,331  | 43,031  | 8,435     | 11,880     | 195,243  |  |
|     | Service cost centre Y                          | 2,970          | 4,455   | 2,970   | 1,485     | (11,880)   |          |  |
|     | Service cost centre X                          | 1,984          | 4,464   | 3,472   | (9,920)   |            |          |  |
|     |                                                | £52,520        | £93,250 | £49,473 |           |            | £195,243 |  |
|     | Absorption rates:                              |                |         |         |           |            |          |  |
|     | ÷ direct labour hours                          | 5,200          | 7,460   | 4,780   |           |            |          |  |
|     | = rate per hour                                | £10·10         | £12·50  | £10·35  |           |            |          |  |
| (c) | Job 57 – total production co                   | st:            |         |         |           |            |          |  |
|     |                                                |                |         | £       | £         |            |          |  |
|     | Direct material                                |                |         |         | 1,678·0   |            |          |  |
|     | Direct labour                                  | (288 + 425 -   | + 304)  |         | 1,017.0   |            |          |  |
|     | Overhead:                                      |                |         |         | ,         |            |          |  |
|     | Production cost centre A                       | (36 hrs at £10 | O·10) 3 | 63·6    |           |            |          |  |
|     | Production cost centre B                       | (50 hrs at £1) | 2.50) 6 | 25.0    |           |            |          |  |
|     | Production cost centre C                       | (32 hrs at £10 |         | 31.2    | 1,319.8   |            |          |  |
|     | Total                                          |                |         |         | £4,014·8  |            |          |  |

#### 3 (a) (i) Job costing:

Job costing may be applied, for example, by a builder or by a repair and maintenance business.

Job costing is a form of specific order costing which is applied where work is undertaken to customer's specific requirements and where the work is of comparatively short duration. Each job is a separate cost unit.

#### (ii) Process costing:

Process costing may be applied, for example, in chemical manufacture or in oil refining.

Process costing is applied where homogeneous goods or services result from a sequence of continuous operations. The cost unit will be a unit of the product/service and unit costs will be averaged over a period from cumulative costs and output.

#### (b) Process 2 costs:

(i) Production cost per equivalent unit:

|                                                                                                      | Process 1<br>costs |   | Materials<br>added |   | Conversion<br>costs |                 |
|------------------------------------------------------------------------------------------------------|--------------------|---|--------------------|---|---------------------|-----------------|
| Equivalent units:<br>Transfers to finished goods (units)<br>+ Closing work-in-progress (equiv units) | 1,950<br>210       |   | 1,950<br>168       |   | 1,950<br>84         |                 |
|                                                                                                      | 2,160              |   | 2,118              |   | 2,034               |                 |
| Costs                                                                                                | £22,032            |   | £5,295             |   | £8,136              |                 |
| Cost per equivalent unit                                                                             | £10·20             | + | <u>£2·50</u>       | + | £4.00               | = <u>£16·70</u> |

(ii) Transfer to finished goods:

1,950 units at £16.70 = £32,565

(iii) Closing work-in-progress:

|                  |                          |   | £      |
|------------------|--------------------------|---|--------|
| Process 1 costs  | 210 units at £10·20      | = | 2,142  |
| Materials added  | 168 equiv units at £2.50 | = | 420    |
| Conversion costs | 84 equiv units at £4.00  | = | 336    |
|                  |                          |   | £2,898 |

Tutorial Note:

Total costs £35,463 (22,032 + 5,295 + 8,136) = Finished goods £32,565 + WIP £2,898

#### 4 (a) NPV – Project 1:

Present value of a perpetuity = annual cash flow  $\div$  cost of capital expressed as a decimal

Thus, present value of a net cash inflow perpetuity of £13,500 per annum at a cost of capital of 10% per annum = £13,500  $\div$  0.1 = £135,000

 $NPV = \pounds 135,000 - \pounds 119,000 \\ = \pounds 16,000$ 

#### (b) IRR – Project 2:

Net present value at 14%:

| Year    | Cash flow<br>(£000)   | Discount<br>factor                                     | Net present<br>value (£000)                          |
|---------|-----------------------|--------------------------------------------------------|------------------------------------------------------|
| 0       | (241)                 | 1.000                                                  | (241.0)                                              |
| 1       | 60                    | 0.877                                                  | 52.6                                                 |
| 2       | 65                    | 0.769                                                  | 50·0                                                 |
| 3       | 70                    | 0.675                                                  | 47.3                                                 |
| 4       | 100                   | 0.592                                                  | 59·2                                                 |
| 5       | 85                    | 0.519                                                  | 44.1                                                 |
|         |                       |                                                        | 12.2                                                 |
| Interna | I rate of return (IRF | $R = 14\% + \left[ \left( 20\% - 14\% \right) \right]$ | $\left(\frac{12\cdot 2}{12\cdot 2+23\cdot 0}\right)$ |

=<u>16%</u>

(Alternatively the NPV at 10% could have been calculated and used.)

(c) Annual net cash flow – Project 3:

Investment sum  $\div$  cumulative discount factor over five years at 14% = £186,000  $\div$  3.432 = £54,195 net cash inflow per annum.

(d) If the cost of capital increased to 15% Project 2 would still be justified as the IRR is 16% (i.e. IRR > cost of capital). Project 3, with an IRR of 14%, would not be justified (i.e. IRR < cost of capital).

## ACCA Certified Accounting Technician Examination – Paper T4 Accounting for Costs

\_\_\_\_

#### Section A

**1 – 20** 2 marks per question

|   |     |                                                                                |                             | Marks  |
|---|-----|--------------------------------------------------------------------------------|-----------------------------|--------|
| 1 | (a) | safety stock<br>average usage x average lead time                              | 1<br>1                      |        |
|   |     | re-order level                                                                 | 1                           | 3      |
|   |     |                                                                                | 1.                          |        |
|   | (b) | weighted av prices – opening balance<br>after receipt                          | 1/2<br>2<br>1/2<br>2        |        |
|   |     | application – opening balance                                                  | <sup>1</sup> / <sub>2</sub> | F      |
|   |     | after receipt                                                                  |                             | 5      |
|   | (c) |                                                                                | 2                           |        |
|   |     | 200 kg                                                                         | 2                           | 4      |
|   |     |                                                                                |                             | 12     |
|   |     |                                                                                |                             |        |
| 2 | (a) |                                                                                | 3                           |        |
|   |     | service cost centre X<br>totals                                                | 2<br>2                      | 7      |
|   |     |                                                                                |                             |        |
|   | (b) |                                                                                |                             | 3      |
|   | (c) | direct costs<br>overheads                                                      | 1<br>2                      |        |
|   |     | total                                                                          | 1                           | 4      |
|   |     |                                                                                |                             | 14     |
|   |     |                                                                                |                             |        |
| 3 | (a) | <ul><li>(i) Example 1; features 3</li><li>(ii) Example 1; features 3</li></ul> |                             | 4<br>4 |
|   | (b) | (i) units transferred                                                          | $1^{1}/_{2}$                | 4      |
|   | ()  | closing WIP                                                                    | $2^{1}/_{2}$                |        |
|   |     | cost per unit                                                                  | 2                           | 6      |
|   |     | (ii) transfer value                                                            |                             | 2      |
|   |     | (iii) closing WIP value:<br>process 1                                          | <sup>1</sup> / <sub>2</sub> |        |
|   |     | material added conversion costs                                                | 1<br>1                      |        |
|   |     | total                                                                          | 1/2                         | 3      |
|   |     |                                                                                |                             | 19     |
|   |     |                                                                                |                             |        |
| 4 | (a) | perpetuity                                                                     | 2                           |        |
|   |     | NPV                                                                            | 1                           | 3      |
|   | (b) | NPV at 10%/14%                                                                 | 2                           |        |
|   | (0) | IRR                                                                            | 4                           | 6      |
|   | (c) | net cash inflow                                                                |                             | 3      |
|   | (d) | Project 2                                                                      | $1^{1}/_{2}$                | 0      |
|   | ()  | Project 3                                                                      | $1^{1/2}$ $1^{1/2}$         | 3      |
|   |     |                                                                                |                             | 15     |
|   |     |                                                                                |                             |        |