Answers

ACCA Certified Accounting Technician Examination - Paper T4

Accounting for Costs

Section A

1 C
2 D
3 B
4 B
5 A
6 B
7 C
8 C
9 A
10 C
11 A
12 A
13 D
14 D
15 C
16 C
17 B
18 B
19 A
20 D

Workings to computational MCQs:
$3\{[(£ 55,893-48,981) \div(35,480-29,720$ units $)] \times 29,720$ units $\}-£ 48,981=£ 13,317$
$5 \quad[(£ 1,075 \div 200$ units $) \times 70$ units $]=£ 376 \cdot 25$
$7[(1,600+1,400 \mathrm{~kg})-(600 \mathrm{~kg} \times 1$ week $)]=2,400 \mathrm{~kg}$
$8\left[1,600 \mathrm{~kg}-\left(700 \mathrm{~kg} \times 1 \frac{1}{2}\right.\right.$ weeks $\left.)\right]=550 \mathrm{~kg}$
$10[(£ 42,000 \times 0.6)+(£ 57,600 \times 0.45)]=£ 51,120$
$11\{[(£ 164,000 \div 10,000$ hrs $) \times 9,800$ hrs $]-£ 158,000\}=£ 2,720$ over-absorbed
14 (400 litres $\div 0.7$) $=571.4$ (571 litres)
$16\{£ 41,000 \div[(£ 100,800-60,480) \div £ 100,800]\}=£ 102,500$
17112,000 units $-\{£ 36,000 \div[(£ 100,800-60,480) \div 112,000$ units $]\}=12,000$ units
$19[(£ 18,000 \times 3.791)-£ 7,222]=£ 61,016$

Section B

1 (a) Costs of labour turnover:
Replacement costs are the costs incurred in recruiting new employees. These include such things as advertising, interviewing, training and inefficiency of employees while learning a new job.
Preventative costs are the costs incurred in order to try to retain employees. These include such things as employee facilities, working environment, pay and pension schemes.
The labour turnover rate for a period can be calculated as:
Number of employees replaced (or number leaving) x 100\%
Average number of employees
(b) Production ratios:

Working:
Expected hours of actual output $=16,390$ units $\div 25$ units $/ \mathrm{hr}=655 \cdot 6$ direct labour hours
Efficiency ratio:
$\frac{\text { Expected hours of actual output }}{\text { Actual hours worked }} \times 100 \%=\frac{655 \cdot 6}{640} \times 100 \%=\underline{102 \cdot 4 \%}$
Capacity ratio:
$\frac{\text { Actual hours worked }}{\text { Budgeted hours }} \quad \times 100 \%=\frac{640}{660} \times 100 \%=\underline{97 \cdot 0 \%}$
Production volume ratio:
$\frac{\text { Expected hours of actual output }}{\text { Budgeted hours }} \times 100 \%=\frac{655 \cdot 6}{660} \times 100 \%=\underline{99 \cdot 3 \%}$

2 (a) Profit/(loss) in the period:

(£O00)	Product A	Product B	Total
Sales	$619 \cdot 2$	$374 \cdot 4$	$993 \cdot 6$
Costs	$\underline{468 \cdot 0}$	$\underline{312 \cdot 0}$	$\underline{780 \cdot 0}$
Profit	$\underline{151 \cdot 2}$	$\underline{62 \cdot 4}$	$\underline{213 \cdot 6}$

Workings:
Sales: Product A $\quad 72,000 \mathrm{~kg}$ at $£ 8 \cdot 60 / \mathrm{kg}=£ 619,200$
Product B $\quad 48,000 \mathrm{~kg}$ at $£ 7 \cdot 80 / \mathrm{kg}=£ 374,400$
Costs: Product A $£ 780,000 \times(72,000 \div 120,000 \mathrm{~kg})=£ 468,000$
Product B $£ 780,000 \times(48,000 \div 120,000 \mathrm{~kg})=£ 312,000$
(b) Further processing (Product B to Product BB):

Incremental sales $=\quad £ 1 \cdot 20$ per $\mathrm{kg}(£ 9 \cdot 00-£ 7 \cdot 80)$
Incremental costs $=\quad £ 1 \cdot 40$ per kg
Incremental loss $=\quad(£ 0 \cdot 20)$ per kg
Further processing is not worthwhile.

3 (a) Service costing:
Service costing is applied to the provision of services by (or within) an organisation. The main differences, in comparison with costing methods applied to manufactured products, are:
(i) The cost of direct materials will generally be relatively small compared with the costs of direct labour, direct expenses and overheads.
(ii) Indirect costs (overheads) will generally represent a higher proportion of total cost.
(iii) The output of most service organisations (cost centres) is intangible making it more difficult to establish an appropriate cost unit.
(iv) Services cannot be stored and therefore the requirement to value work-in-progress/finished goods stock does not arise.
(b) Vehicle operating costs:

	Cost per vehicle $(£$ per annum $)$
10,500	
Depreciation $[(£ 46,000-4,000) \div 4$ years $]$	3,290
Licence and insurance	3,360
Tyres $[(80,000 \div 40,000 \mathrm{~km}) \times 8 /$ vehicle $\times £ 210 /$ tyre $]$	20,000
Servicing $[(80,000 \div 16,000 \mathrm{~km}) \times £ 650 /$ service $]$	$\underline{18,000}$
Fuel $[(80,000 \div 3 \cdot 2 \mathrm{~km}) \times £ 0 \cdot 80 /$ litre $]$	$\underline{57,400}$
Driver	

Vehicle operating costs per km:
$=£ 57,400 /$ vehicle/annum $\div 80,000 \mathrm{~km} /$ vehicle/annum $=£ 0 \cdot 7175 \mathrm{per} \mathrm{km}$

4 (a) Limiting factor - direct labour:

	Product A	Product B	Product C	
Direct labour hours/unit	$(2 \cdot 4 \div 8)$	$(2 \cdot 4 \div 8)$	$(3 \cdot 2 \div 8)$	
	$=0 \cdot 3$	$=0 \cdot 3$	$=0 \cdot 4$	
	$\times 6,200$	$\times 8,000$	$\times 11,500$	
x Sales demand (units)	1,860	2,400	4,600	$=$ Total 8,860

Direct labour is a limiting factor i.e. $8,860>8,500$
(b) Production schedule:

Product A

Product B

Product C

(i) Production priority: Selling price (£/unit) Variable costs ($£ /$ /unit)
Contribution (£/unit) $\frac{6 \cdot 10}{3 \cdot 60}$
\div Direct labour hours/unit $\quad \div 0.3$
Contribution ($£$ /dir lab hr) $\quad 12.00$
Priority
(ii) Production schedule:

Direct labour hours:
Product B then Product A $\quad 1,860$ balance to Product C Production units 6,200

Section A-2 marks per question

Section B:

1 (a) Replacement costs
Preventative costs

Labour turnover formula
-
(b) Efficiency ratio

4
Capacity ratio
3
Production volume ratio
3
6

2 (a) Sales - 1 for each product
Costs - 2 for each product
Profit - $1 / 2$ for each product - total
(b) Incremental sales

2
Incremental costs
2
Incremental loss
Not worthwhile
1

3 (a) Up to 2 for each $\max 6$
(b) Depreciation

Licence and insurance
$21 / 2$
Tyres
Servicing
Fuel
Driver
Cost per km

4 (a) Direct labour hours required
Limiting factor
(b) Contribution/unit

Contribution/direct labour hour 3
Priority
1
Production schedule

3
1
$11 / 2$
$11 / 2$
2
$1 / 2$
$\underline{11 / 2}$
$\frac{10}{16}$
16 4
$\frac{10}{14}$

