

FSMQ MATHEMATICS

6990/2 – Using and Applying Statistics Mark scheme

6990 June 2014

Version/Stage: Final V1.0

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2014 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Key to mark scheme abbreviations

mark is for method
mark is dependent on one or more M marks and is for method
mark is dependent on M or m marks and is for accuracy
mark is independent of M or m marks and is for method and
accuracy
mark is for explanation
follow through from previous incorrect result
correct answer only
correct solution only
anything which falls within
anything which rounds to
any correct form
answer given
special case
or equivalent
2 or 1 (or 0) accuracy marks
deduct x marks for each error
no method shown
possibly implied
substantially correct approach
candidate
significant figure(s)
decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Question	Solution	Marks	Total	Comments
1(a)	$\frac{137-76}{100}$ × 100	М1		
	76		-	
	= 80.3%	A1	2	accept 80.263
(b)(i)	24 2	M1		B1 for using measurements. Accept
	$\frac{2}{76} = \frac{1}{214}$			awrt 70 provided same value is used
	2			& squared
	$? = 67.6$ area is 68cm^2	AT		
(ii)	24 2	M1		oe
	$\frac{21}{76} = \frac{1}{88}$			
	$? = \sqrt{27.789}$	M1		
	$= 5.27(\text{cm}) \dots$ for side of square	A1	5	accept 5.3
(c)	$\frac{41.3}{\times 26.9}$ (=11.1097)	M1		Alt: (100-41.3)÷100 M1 ×26.9 M1
	100	MA		15 7000 14
	26.9 - 11.1	Μ1 Δ1	3	= 15./903 A1
	Total		10	
2(a)	cf: 3700; 10240; 15690; 22490;			
	27980; 29320; 29941; 30265;			
	(30570)	B1		
		B1 B1	3	
	correct plots $\pm \frac{1}{2}$ sq.			
(b)(i)	median value £19000 - £21000	B1		
(;;)	00 th perceptile (16000 (50000	D1		
(11)	90 percentile £40000 - £30000	DI		
(iii)	10^{th} percentile £9000 - £11000	B1	3	
		D 4		
(C)	skewed or asymmetric	B1 B1	2	
(d)(i)	mean value is calculated using all	E1		
	data including extreme values			
(ii)	London taxpayers receive a greater			
	income on average	E1	2	ое
	Total		10	

Question	Solution	Marks	Total	Comments
3(a)(i)	$\overline{d} = 8.33$	B1	1	
(ii)	sd = 0.345	B2	2	(1182.556
				$\sqrt{\frac{17}{17}-8.33^2}$ M1
				-0.345 $\Delta 1$
				- 0.3-5
(iii)	8.33+2×0.345=9.02	M1		
	$8.332 \times 0.345=7.64$	M1		
	result in 1952 of 7.57 metres is	A1ft	3	
	outlier			
(b)	140.2 or 0.1402 occ	D1		
(0)	140.2 of 0.1402 seen	Ы		
	$\frac{8.90}{140.2} \times 100$	M1		
	140.2 - 6 348	Λ1	2	accopt 6.35
	= 0.548	AI	3	
(c)	men jump further than women on	E1		
	average			
	men have smaller std. dev – hence			
	are more consistent	E1	2	
4(2)	I Otal	PO	11	P1 for 7 or 8 correct plots
+(a)		DZ	2	
(b)	$\frac{1}{r}$ - 18 37	B1		answers to 3 sf or better
	$\frac{1}{2} = 5000$	B1		
	y = 3.888	 D1	2	
	r = 0.7449	Ы	3	
(c)	some evidence that more gold			
	medals tend to be won by countries			
	with larger populations	E1	1	
		D4 D4		
(d)(i)	a = 0.3139b = 0.1192	В1,В1 ∎1	2	B1 for 2 correct values not attributed
	y = 0.314x + 0.119	DI	3	
(ii)	line through their mean $(19.4.5.90)$	B1ft		
(1)	line through $(0, 0, 110)$ as easther			
	aleulated velue	DIII		
	correct line	R1	2	
			5	
(e)(i)	$y = 0.314 \times 34.8 + 0.119(= 11.0462)$	M1		
	11 medals	A1ft	2	must be whole number
(ii)	suggests equation (or line) is not			
	very reliable	E1	1	oe accept any sensible comment
	Total		15	

Question	Solution	Marks	Total	Comments
5(a)(i)	$P(W < 920): z = \frac{920 - 800}{2}$	M1		attempt at standardising
	$1(w < 520) \cdot 2 = 80$			
	z = 1.5			
	P(z < 1.5)	M1		
	= 0.9332	A1	3	
(ii)	$P(W < 780): z = \frac{780 - 800}{80}$			
	z = -0.25	B1		must be negative
	P(z < -0.25) = 1 - P(z < 0.25)	M1		
	=1-0.5987 = (0.4013)			
	P(-0.25 < z < 1.5) = 0.9332 - 0.4013	M1		their values
	= 0.5319	A1	4	
(b)	90%: z = -1.28(2)	B1		allow -1.29
	$-1.28 = \frac{W - 800}{80}$	M1		
	$-1.28 \times 80 + 800 = W$	M1		
	697 (grams) = W	A1	4	accept 696-700
				cso
(c)	350 25(50 5)			
	$35 + \frac{35}{500} \times 35(=59.5)$	M1		
	+20	m1		
	= 79.5 minutes	A1	3	accept 80
	Total		14	
	TOTAL		60	