## AQA

# General Certificate of Education June 2010 

# Applying Mathematics UOM4/2 Advanced Subsidiary Level 

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to mark scheme and abbreviations used in marking

| M | mark is for method |  |  |
| :--- | :--- | :--- | :--- |
| m or dM | mark is dependent on one or more M marks and is for method |  |  |
| A | mark is dependent on M or m marks and is for accuracy |  |  |

## No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

## General Certificate of Education

## A/S Level - Applying Mathematics UOM 4/2

## Answers and Marking Scheme - June 2010

## Question 1

| (a)(i) | $\begin{aligned} & 7 \times 2.205=15.435 \text { pounds } \\ & 0.435 \text { pounds }=0.435 \times 16=6.96 \text { ounces } \\ & 7 \text { kilograms }=15 \text { pounds } 7 \text { ounces } \end{aligned}$ | $\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | multiplying candidate's decimal by 16 |
| :---: | :---: | :---: | :---: |
| (a)(ii) | $\frac{5}{2.205}=2.27 \text { kilograms }$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | allow greater degree of accuracy |
| (a)(iii) | $k=\frac{p}{2.205}$ | B2 | accept equivalent $k=0.454 p$ allow B 1 for expression |
| (b)(i) | $t=25 p+25$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | for $25 p$ (implied) |
| (b)(ii) | $t=25 \times 5+25=150$ | $\begin{gathered} \hline \text { M1 } \\ \text { A1ft } \\ \hline \end{gathered}$ | accept 2 hours 30 minutes if suitable linear equation |
| (b)(iii) |  | B1 B1 | straight line with positive gradient - no negative $p$ <br> - no negative $t$ <br> correct intercept on $t$ axis |
| (c)(i) | $t=55 k+25$ | $\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \hline \end{gathered}$ | for $55 k$ |
| (c)(ii) | $\begin{aligned} & 212=55 k+25 \\ & 55 k=187 \\ & k=3.4 \\ & 3.4 \text { (kilograms) } \end{aligned}$ | $\begin{gathered} \text { M1 } \\ \text { A1ft } \end{gathered}$ | rearrangement of linear equation to remove 'tc' from linear equation |
|  | TOTAL | 17 |  |

## Question 2

| (a)(i) | 75\% |  |  | B2 | allow SC 1 for 0.75 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (a)(ii) | 40\% |  |  | B2 | allow SC 1 for 0.4 |
| (b) | $\begin{aligned} & A_{1}=0.75 \times 100+0.4 \times 50 \\ & A_{1}=(75+20)=95 \end{aligned}$ <br> There are 150 calculators altogether so $\mathrm{B}_{1}=150-A_{1}=55$ <br> Alternatively: $B_{1}=0.25 \times 100+0.6 \times 50=55$ |  |  | $\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 ft } \end{gathered}$ | alternatively finding $B_{1}$ first |
| (c)(i) | Week $n$ | $A_{n}$ <br> 100 <br> 95 <br> 93 <br> 93 <br> 92 <br> 92 | $B_{n}$ <br> 50 <br> 55 <br> 57 <br> 57 <br> 58 <br> 58 | $\begin{gathered} \mathbf{B} 1+\mathbf{B} 1 \\ \mathbf{B} 1 \\ \mathbf{B} 1 \\ \mathbf{B 1} \end{gathered}$ | SC4 for values in table that round to correct values. <br> SC2 if all rows add up to 150 but incorrect values. $\begin{aligned} & n=2 \\ & n=3 \\ & n=4 \\ & n=5 \end{aligned}$ |
| (c)(ii) | 92 in town A and 58 in town B |  |  | B1 |  |
| (d) | any two appropriate factors, for example: <br> not the same percentage of calculators returned each week <br> not all calculators borrowed <br> not all calculators returned <br> calculators borrowed for different lengths of time |  |  | B1 <br> B1 <br> B1 <br> B1 | Maximum B2 |
|  | TOTAL |  |  | 15 |  |

## Question 3

| (a)(i) | $22\left({ }^{\circ} \mathrm{C}\right)$ | B1 | cao |
| :---: | :---: | :---: | :---: |
| (a)(ii) | $\begin{aligned} & n-30=180 \\ & n=210 \end{aligned}$ | B1 | cao |
| (a)(iii) | $6^{\circ} \mathrm{C}$ | B1 | cao |
| (b) | $\begin{aligned} & 14-8 \cos (n-30)^{\circ}=15 \\ & 8 \cos (n-30)^{\circ}=-1 \\ & \cos (n-30)^{\circ}=-\frac{1}{8}=-0.125 \\ & n-30=97.18 \\ & n=127(.18) \end{aligned}$ | M1 <br> M1 <br> M1 <br> A1 | isolating $\cos (n-30)^{\circ}$ <br> evidence of use of $\cos ^{-1}$ (1.696 in radians) |
| (c) | Stretch in the $y$-direction scale factor 8 or correct reference to amplitude <br> Translation parallel to the $x$ axis (30 units in the positive direction) <br> Reflect in $x$ axis <br> Translation parallel to the $y$ axis <br> 14 units in the positive direction | B1 <br> B1 <br> B1 <br> B1 <br> B1 | may refer to $n$ axis (for $x$ ) and axis (for $y$ ) <br> stretch in $y$-direction scale factor -8 scores B2 |
| (d) |  | B1 <br> B1 <br> B1 | general (-cos) shape with one max approx half way through year - not quadratic indication of maximum at 26 <br> indication of minima at 6 |
|  | TOTAL | 15 |  |

## Question 4

| (a)(i) | $\frac{4}{10}=\frac{2}{5}$ | B1 | allow $0.4,40 \%$ |
| :---: | :--- | :---: | :--- |
| (a)(ii) | there are 4 randomly assigned integers out of 10 | B1 |  |
| (b) | see tables below |  |  |


| Time since start <br> of simulation, $t$ | Customer | Time arrives | Random integer | Time taken to buy <br> a ticket at window |
| :---: | :---: | :---: | :---: | :---: |
| 0 | A | 0 | 2 | 1 |
| 1 | B | 1 | 1 | 1 |
| 2 | C | 2 | 5 | 2 |
| 3 | D | 3 | 4 | 2 |
| 4 | E | 4 | 0 | 1 |
| 5 | F | 5 | 7 | 3 |
| 6 | G | 6 | 3 | 1 |
| 7 | H | 7 | 2 | 1 |
| 8 | I | 8 | 7 | 3 |
| 9 | J | 9 | 9 | 4 |
| 10 | K | 10 | 2 | 1 |

B1 for rows $t=4,5,6$ correct
B1 for remaining rows correct

| Time since start <br> of simulation, $t$ | Customer being <br> Served | Customer(s) in <br> queue |
| :---: | :---: | :---: |
| 0 | A | - |
| 1 | B | - |
| 2 | C | - |
| 3 | C | D |
| 4 | D | E |
| 5 | D | E, F |
| 6 | E | F, G |
| 7 | F | G, H |
| 8 | F | G, H, I |
| 9 | F | G, H, I, J |
| 10 | G | H, I, J, K |

B1 for 'Customer being served' column correct

B1ft for first 3 values below
shading in 'Customers in queue' Column

B1ft for remaining values

## Question 4 .... Cont/d

(c)

See tables below

| Time since start <br> of simulation, $t$ | Customer | Time arrives | Random integer | Time taken to buy <br> a ticket at window |
| :---: | :---: | :---: | :---: | :---: |
| 0 | M | 0 | 2 | 2 |
| 1 | N | 1 | 3 | 3 |
| 2 | P | 2 | 0 | 1 |
| 3 | Q | 3 | 9 | 4 |
| 4 | R | 4 | 1 | 2 |
| 5 | S | 5 | 0 | 1 |
| 6 | T | 6 | 5 | 3 |
| 7 | U | 7 | 8 | 4 |
| 8 | V | 8 | 9 | 4 |
| 9 | W | 9 | 2 | 2 |
| 10 | X | 10 | 2 | 2 |

B1 for rows $t=4,5,6$ correct
B1 for remaining rows correct

| Time since start <br> of simulation, $t$ | Customer being <br> Served | Customer(s) in <br> queue |
| :---: | :---: | :---: |
| 0 | M | - |
| 1 | M | N |
| 2 | N | P |
| 3 | N | $\mathrm{P}, \mathrm{Q}$ |
| 4 | N | $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ |
| 5 | P | $\mathrm{Q}, \mathrm{R}, \mathrm{S}$ |
| 6 | Q | $\mathrm{R}, \mathrm{S}, \mathrm{T}$ |
| 7 | Q | $\mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{U}$ |
| 8 | Q | $\mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{U}, \mathrm{V}$ |
| 9 | Q | R, S, T, U, V, <br> W |
| 10 | R | $\mathrm{S}, \mathrm{T}, \mathrm{U} . \mathrm{V} . \mathrm{W}$, <br> X |

B1 for 'Customer being served' column Correct

B1ft for first 3 values in 'Customer(s) in queue' column

B1ft for remaining values.

## Question 4 .... Cont/d

| (d) | correct reasoning with appropriate justification <br> eg use the Travel Today window because after <br> 10 minutes there are 4 customers waiting <br> whereas at that time the All Travel window has <br> 6 customers waiting <br> or <br> use the Travel Today window because of the <br> probability model which suggests customers <br> will be dealt with more quickly. | B1 | follow through from their <br> tables if complete. <br> has to be quantified using <br> numbers from their table <br> or from probability model. |
| :---: | :--- | :---: | :--- |
| (e) | altering an assumption to make simulation more <br> realistic such as: <br> allow customers to change queues <br> have more than one customer arriving at once <br> allow times other than whole numbers of <br> minutes | B1 | B1 |
|  | TOTAL | $\mathbf{1 7}$ | Maximum B2 |
|  | TOTAL MARK FOR PAPER | $\mathbf{6 4}$ |  |

+ up to 3 marks for ability to present information accurately using correct notation.
+ up to 3 marks for mathematical arguments presented clearly and logically.

|  | TOTAL MARK | 70 |  |
| :--- | :--- | :--- | :--- |

