Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

Free-Standing Mathematics Qualification Advanced Level June 2010

Modelling with Calculus

6992/2

For Examiner's Use

Examiner's Initials

Mark

Question

1

2

3

4

5

TOTAL

Unit 12

Tuesday 25 May 2010 1.30 pm to 3.00 pm

For this paper you must have:

- a clean copy of the Data Sheet (enclosed)
- a ruler
- a calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- The **final** answer to questions requiring the use of calculators should be given to three significant figures, unless stated otherwise.
- You may not refer to the copy of the Data Sheet that was available prior to this examination. A clean copy is enclosed for your use.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 60.
- You may use either a scientific calculator or a graphics calculator.

Section A

Answer all questions in the spaces provided.

Use Shot put on page 2 of the Data Sheet.

1 Felipe throws the shot.

The vertical height of the shot, h metres, above O, the point from which it was thrown, can be modelled by the equation

$$h = x - 0.05x^2$$

where x metres is the horizontal distance from point O.

Use this model and calculus to answer the following questions.

- (a) Find the vertical height of the shot above O when x = 8. (1 mark)
- (b) Find $\frac{dh}{dx}$. (2 marks)
- (c) Find x when $\frac{dh}{dx} = 0$. (2 marks)
- (d) Hence predict the maximum vertical height of the shot above O. (2 marks)
- (e) (i) Find $\frac{d^2h}{dx^2}$. (1 mark)
 - (ii) Hence state how this value confirms that the answer to part (d) is the maximum height and not the minimum. (1 mark)
- (f) Felipe lets go of the shot when it is 2 metres above the level of the horizontal ground.

Find the horizontal distance which the shot travels before hitting the ground.

(4 marks)

QUESTION PART REFERENCE	

QUESTION PART REFERENCE	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	

QUESTION PART REFERENCE	
REFERENCE	
•••••	
•••••	

Section B

Answer all questions in the spaces provided.

Use Coffee shop on page 3 of the Data Sheet.

The number of coffees, S, sold per day, 10t days after the shop was opened, may be modelled by the function

$$S = 10t^3 - 60t^2 + 110t + 10$$

for values of t from 0 to 3.3; that is, for the first 33 days that the shop was open.

- (a) Use this model and calculus to answer the following questions.
 - (i) Find t when S has a minimum turning point.

(6 marks)

(ii) Find this minimum value.

(2 marks)

(iii) Find $\frac{d^2S}{dt^2}$.

(2 marks)

- (iv) Use your answer to part (a)(iii) to confirm that the value found in part (a)(ii) is a minimum value. (2 marks)
- **(b)** The mean number of coffees sold per day is given by

$$\overline{S} = \frac{1}{3} \int_0^3 (10t^3 - 60t^2 + 110t + 10) dt$$

- (i) Use the trapezium rule with three strips to find an estimate for the mean number of coffees sold per day. (5 marks)
- (ii) How would you make the answer obtained from the trapezium rule more accurate?

 (1 mark)
- (iii) Use integration to evaluate

$$\frac{1}{3} \int_{0}^{3} (10t^{3} - 60t^{2} + 110t + 10) dt$$

to find the mean number of coffees sold per day.

(4 marks)

QUESTION	
PART	
REFERENCE	

QUESTION PART REFERENCE	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	

QUESTION PART REFERENCE	
REFERENCE	
•••••	
•••••	

QUESTION PART REFERENCE	
••••••	
•••••	
•••••	
••••••	
••••••	
•••••	
•••••	
•••••	
••••••	

QUESTION PART REFERENCE	
•••••	
•••••	
•••••	

Section C

Answer all questions in the spaces provided.

Use Height of a sunflower on page 3 of the Data Sheet.

After t days, the height of the sunflower, h centimetres, satisfies the differential equation

$$\frac{\mathrm{d}h}{\mathrm{d}t} = k(150 - h)$$

where k is a constant.

(a) (i) Find the general solution for h of this differential equation.

Give your answer in terms of k.

(5 marks)

(ii) Given that, when t = 0, the height of the sunflower was zero, show that $h = 150(1 - e^{-kt})$.

(2 marks)

(iii) When t = 30, h = 100. Find k.

(3 marks)

(b) Find the value of t when the height is 120 centimetres.

(3 marks)

QUESTION PART	
PART REFERENCE	
KLILKLINGL	
	• • • • • • • • • • • • • • • • • • • •

QUESTION PART REFERENCE	
••••••	
•••••	
•••••	
••••••	
••••••	
•••••	
•••••	
•••••	
••••••	

QUESTION PART REFERENCE	
•••••	
•••••	
••••••	
••••••	
••••••	
•••••	
•••••	
••••••	
••••••	
••••••	
•••••	

QUESTION PART REFERENCE	
••••••	
•••••	
•••••	
••••••	
••••••	
•••••	
•••••	
••••••	
••••••	

4		The height of another sunflower, h centimetres, after t days of growth is given by
		$h = 150(1 - e^{-0.04t})$
(a)	Find h , to five decimal places, when:
	(i)	t = 125;
	(ii)	t = 125.1. (2 marks)
(b)		Using your answers to part (a), find an estimate for the rate of increase in height when $t=125$. (3 marks)
QUESTION PART REFERENCE		
	•••••	
••••••	•••••	
••••••	•••••	
••••••	•••••	
	•••••	
	•••••	
	•••••	
	•••••	
	•••••	
	••••••	
	•••••	
	•••••	
	•••••	
	•••••	
	•••••	
	••••••	

QUESTION PART REFERENCE	
•••••	

Section D

Answer all questions in the spaces provided.

Use Experiment with an elastic string on page 4 of the Data Sheet.

The distance, x centimetres, of the weight below O may be modelled by the function

$$x = 15 + 3\cos\frac{\pi}{2}t$$

where t is the number of seconds after the system was set into motion.

- (a) When t = 2, show that x = 12. (1 mark)
- (b) Find an expression for the velocity of the weight, $\frac{dx}{dt}$. (2 marks)
- (c) (i) Find the maximum value of $\frac{dx}{dt}$.

You may leave your answer as a multiple of π or as a decimal to three significant figures. (2 marks)

(ii) Find two values of t when this occurs. (2 marks)

QUESTION	
PART	
REFERENCE	
TILL ETTENOL	
	• • • • • • • • • • • • • • • • • • • •
•••••	
•••••	
•••••	
•••••	

	END OF QUESTIONS			
••••••				
•••••				
••••••				
•••••				
•••••				
REFERENCE				
QUESTION PART REFERENCE				

