APPLYING MATHEMATICS Paper 1

UOM4/1

A~R

Friday 16 May 20089.00 am to 10.00 am

For this paper you must have:

- an 8-page answer book
- a clean copy of the Data Sheet (enclosed)
- a graphics calculator
- a ruler.

Time allowed: 1 hour

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is UOM4/1.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- The final answer to questions requiring the use of tables or calculators should normally be given to three significant figures.
- You may not refer to the copy of the Data Sheet that was available prior to this examination. A clean copy is available for your use.

Information

- The maximum mark for this paper is 30 .
- The marks for questions are shown in brackets.

Answer all questions.
Use Population growth on the Data Sheet.

1 A sum of money is invested and receives compound interest. The growth can be expressed by the recurrence relation $P_{n+1}=1.025 P_{n}$, where P_{n} is the amount of money at the end of the $n^{\text {th }}$ year, and P_{n+1} is the amount of money one year later.
(a) (i) State the interest rate as a percentage in this case.
(ii) Make a copy of the table below.

n, year number	$\boldsymbol{P}_{\boldsymbol{n}}$, amount at end of $\boldsymbol{n}^{\text {th }}$ year
0	$£ 200.00$
1	$£ 205.00$
2	
3	
4	
5	

Complete your table using the recurrence relation $P_{n+1}=1.025 P_{n}$ to show how much an initial investment of $£ 200$ is worth at the end of each successive year for the first 5 years.

You should give values to the nearest penny, requiring you to work with values correct to at least three decimal places.
(b) This growth can also be modelled by the exponential function $P=P_{0} \mathrm{e}^{k t}$, where P is the value of the investment after t years, P_{0} is the initial investment and k is a constant.
(i) Sketch a graph of P plotted against t that shows clearly all significant features.
(ii) Find k, using the method of considering growth in the first year, as suggested in the article.

2 The article explains that for a population that doubles every 25 years, ' $2 P_{0}=P_{0} \times \mathrm{e}^{25 k}$ leading to $k=0.0277^{\prime}$.

Show clearly how this value of k can be obtained.

3 Scotland currently has a population growth rate of 0.4%.
(a) Use the 'rule of 70 ' to find how long it will take the population to double in size.
(2 marks)
(b) Suggest a reason why, in reality, this is unlikely to be the case.
(1 mark)

4 The data in Figure 2 show that the population of the world approximately doubled between 1960 and 2000. The 'rule of 70 ' gives the annual percentage growth rate over this period as approximately 1.75%.
(a) Use this growth rate together with $(1+r)=\mathrm{e}^{k}$ to confirm that the value of k in the exponential model is given by $k=0.0173$.
(b) (i) The exponential model

$$
P=3 \mathrm{e}^{0.0173(t-1960)}
$$

predicts the population in the calendar year t.
Find the population this predicts for the year 2050.
(2 marks)
(ii) Explain why this value is not the same as the value suggested in the table of

Figure 2 in the article.
(2 marks)

5 Find a linear model for the population, P billions of people, of the world in year t, assuming that the population of the world was 3 billion in 1960 and 6 billion in 2000.
(4 marks)

6 Use the recurrence relation

$$
P_{n+1}=P_{n}+0.035 P_{n}\left(1-\frac{P_{n}}{9.8}\right)
$$

and a value of the world's population $P_{0}=3$ (billion) in 1960 to find the population of the world in 1961.

7 (a) State the limiting value of the world's population according to the logistic model

$$
\begin{equation*}
P_{n+1}=P_{n}+0.035 P_{n}\left(1-\frac{P_{n}}{9.8}\right) \tag{1mark}
\end{equation*}
$$

(b) Explain, making reference to the logistic model, why you chose this value.

There are no questions printed on this page

