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Population growth

For many years, countries around the world have

been interested in the growth of their

populations for both economic and social

reasons. At a global level, this is an important

matter as it is clear that the world cannot

support an ever-growing population. Some basic

mathematical models have been developed to

help us make sense of how populations grow

and allow us to make predictions about their

future size. Initially, these models were based

on the ideas put forward by Thomas Malthus, a

political economist who wrote an important

book, ‘An Essay on the Principle of Population’,

first published in 1798. In this, Malthus wrote

about his concerns that the supply of food could

not be increased at a sufficient rate to keep pace

with the increase in population.

Malthus suggested that populations grow

exponentially. He wrote of this growth in terms

of a series in which, to get to the next term (in

this case, population size), you multiply by a constant growth factor. In this way each successive

term is greater than the previous term and, consequently, each successive increase will be greater

than the last, as each time you are starting with a larger value than you did previously.

This can be expressed mathematically by a recurrence relation of the form Pnþ1 ¼ ð1þ rÞPn ,
where Pn is the population at the start of a time period, r is the growth rate (population increase

per unit time) and Pnþ1 is the population after one time period.

You might recognise this as being the same idea as that associated with compound interest. For

example, imagine that you invest £100 in a bank account that gives interest at a rate of 5% per

year. After one year the amount of money you have in the bank will become £105, after a second

year this will become £110.25, after a third year £115.76, and so on.

Another mathematical way of expressing growth of this type is to use an exponential function of

the form P ¼ P0e
kt , where P is the population size at time t, P0 is the initial population (at time

t ¼ 0 ) and k is a factor that depends on the growth rate.

One way of finding how the factor k used in the exponential function is linked to the growth rate,

r, is to consider growth in the first year.

For example, consider again the case of compound interest above. For the first year of growth the

recurrence relation gives P1 ¼ 1:05� P0 and the exponential function gives P1 ¼ P0 � ek .

Equating these two expressions gives 1:05 ¼ ek . So k ¼ 0:0488 .

Figure 1

Thomas Malthus
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In his essay, Malthus argued his case by referring to how long it takes populations to double in

size, suggesting that human populations typically double in size every 25 years. To find the annual

growth rate that this implies, you can substitute some values into the exponential function

associated with such growth.

For example, if the population is P0 when t ¼ 0 , then twenty five years later (ie when t ¼ 25 ),

P ¼ 2P0 .

This gives 2P0 ¼ P0 � e25�k leading to k ¼ 0:0277 .

The annual growth rate can be found in this case by again using ð1þ rÞ ¼ ek , so r, the growth

rate, is approximately 2.8% .

This mathematics leads to the ‘rule of 70’

which links the growth rate to the time it

takes a population to double. In the case

above, 25� 2:8 ¼ 70 . This suggests that to

find an approximate value for the time it

takes a population (or an amount of money

gaining compound interest) to double, you

should divide 70 by the growth rate

expressed as a percentage. So, if you were to

invest an amount of money with interest

compounded at 5%, it would take

approximately 14 years to double in value.

However, as you might suspect, the growth

of human populations is not as simple as this:

the growth rate varies from year to year,

although for large populations this variation

is not too great. Malthus realised this and

wrote about variable population growth rates

in later editions of his essay.

Let us now have a look at how these ideas

might apply to the growth of the population

of the world.

The data in Figure 2 show the growth of the

world’s population over time and its

predicted growth to 2150. It is clear that

early values are estimates and future values

are predictions.

Figure 2

Year (AD)
World population in

billions

1000 0.31

1250 0.40

1500 0.50

1750 0.79

1800 0.98

1850 1.26

1900 1.65

1910 1.75

1920 1.86

1930 2.07

1940 2.30

1950 2.52

1960 3.02

1970 3.70

1980 4.44

1990 5.27

2000 6.06

2010 6.79

2020 7.50

2030 8.11

2040 8.58

2050 8.91

2100 9.46

2150 9.75

Turn over

s
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Figure 3

Graph showing growth of the world’s population and predicted growth to 2150

As the graph in Figure 3 shows there are some periods where the growth of the world’s population

might be modelled effectively by an exponential function, but at other times a linear model might

perhaps be equally effective.

For example, consider the period from 1960 to 2000. We have data for the world’s population

every ten years during this period and this is shown as a graph in Figure 4, together with an

exponential model for the period. However, it does appear that, for many purposes, the data for

the period 1960 to 2000 might equally well be modelled by a linear function.

Figure 4

Graph showing growth of the world’s population and

exponential model for the period 1960 to 2000
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As you can see from the graph in Figure 3, the predicted values of the world’s population look as

though they are tending towards a limit. In some ways, this is inevitable: the Earth will not be

able to sustain exponential growth of the human population as there are not enough resources in

terms of food and energy.

To take account of this, a better model is to use a recurrence relation explored by the

mathematician Verhulst in the mid-nineteenth century. This is known as the logistic equation and,

in the form Pnþ1 ¼ Pn þ 0:035Pn 1� Pn
9:8

� �
, gives a good approximation to the world population

data (and predicted growth) from 1960 onwards as shown in Figure 5.

Figure 5

Graph of world population data and predicted growth modelled by the logistic equation
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