ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Mathematics

Use of Maths UOM4/2

Mark Scheme

2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Use of Mathematics

Advanced Subsidiary Level - Applying Mathematics Paper 2 (UOM 4/2)

Answers and marking Scheme - June 2005

Question 1

Question 2

Question 3

Question 4

(a)	The probability that four passengers will arrive is 0.2. Therefore 2 out of 10 integers (0 to 9 inclusive) are assigned.	B1	
(b)			

Time	$\mathbf{0 6 5 0}$	$\mathbf{0 6 5 1}$	$\mathbf{0 6 5 2}$	$\mathbf{0 6 5 3}$	$\mathbf{0 6 5 4}$	$\mathbf{0 6 5 5}$	$\mathbf{0 6 5 6}$	$\mathbf{0 6 5 7}$	$\mathbf{0 6 5 8}$	$\mathbf{0 6 5 9}$	$\mathbf{0 7 0 0}$
Random No	6	0	3	0	1	2	2	1	4	2	6
No of passengers arriving	3	0	2	0	0	1	1	0	2	1	3
Passengers arriving	A, B, C	-	D, E	-	-	F	G	-	H, I	J	K, L, L, M

\(\left.$$
\begin{array}{|l|l|l|l|}\hline & \text { B1 } & \begin{array}{l}\text { correct no of passengers at } \\
\text { times 06 55, 06 56, 06 57 }\end{array}
$$

correct no of passengers at

times 06 58, 06 59, 07 00\end{array}\right\}\)| for correct passengers |
| :--- |
| identified at 06 55, 06 56, |
| $0657,0658,0659,0700$ |
| for times of passengers |
| arriving (F to M on table 2, |
| 2nd column) |, | B1ft |
| :--- |

Order in which passengers arrive and join queue at ticket office	Timepassengerarrives	Time to buy ticket		Time at which passenger has bought ticket (hours:minutes:seconds)
		Random Number	Length of time to buy ticket (minutes:seconds)	
A	0650	6	1:00	06:51:00
B	0650	0	0:30	06:51:30
C	0650	3	0:30	06:52:00
D	0652	4	0:30	06:52:30
E	0652	2	0:30	06:53:00
F	0655	1	0:30	06:55:30
G	0656	8	1:30	06:57:30
H	0658	8	1:30	06:59:30
I	0658	5	1:00	07:00:30
J	0659	5	1:00	07:01:30
K	0700	7	1:00	07:02:30
L	0700	3	0:30	07:03:00
M	0700	6	1:00	07:04:00

(c)	Passenger K	B1 ft	"Their" first 7.00
(d)	Length of time to buy ticket column	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	for F, G for H, I, J for K, L, M
(e)		$\begin{aligned} & \text { B1ft } \\ & \text { B1ft } \\ & \text { B1ft } \\ & \text { B1ft } \end{aligned}$	$\left.\begin{array}{l}\text { for FG correct } \\ \text { for } \mathrm{HI} \text { correct } \\ \text { for } \mathrm{JK} \text { correct } \\ \text { for } \mathrm{LM} \text { correct }\end{array}\right\} \quad \mathrm{ft}$ and wheir times
((f)	Passenger I	B1 ft	condone; bought ticket at 7am, caught train
(g)	Do not employ another clerk because only 2 people miss their train due to waiting to buy a ticket or next train in 5 minutes	B2	OR: Do employ another clerk because few passengers wait or miss the train
(h)	Any 3 sensible Examples: Simulate arrival time of train Simulate whether each passenger needs to buy a ticket or not Simulate greater variability in how long passengers take to buy a ticket Simulate greater variability in when passengers arrive		Identify 2 flaws in current simulation B1 Identify 3 flaws B2
	TOTAL	20	
	TOTAL FOR PAPER	70	

