GCE 2004 June Series

ASSESSMENT and OUALIFICATIONS ALLIANCE

Mark Scheme

Applying Mathematics 2 (UOM4/2)

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:
Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA
Tel: 01619531170
or
download from the AQA website: www.aqa.org.uk
© Assessment and Qualifications Alliance 2004
COPYRIGHT
AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334.

Key to Mark Scheme

M	mark is for	method
m	mark is dependent on one or more M marks and is for	method
A	mark is dependent on M or m mark and is for	accuracy
B	mark is independent of M or m and is for	method and accuracy
E	mark is for	explanation
\checkmark or ft		follow through from previous incorrect result
cao		correct answer only
cso		correct solution only
awfw		anything which falls within
awrt		anything which rounds to
acf		any correct form
ag		answer given
sc		special case
oe		or equivalent
sf		significant figure(s)
dp		decimal place(s)
A2,1		2 or 1 (or 0) accuracy marks
-x ee		deduct x marks for each error

	Abbreviations used in marking
MC $-\boldsymbol{x}$	deducted x marks for mis-copy
MR $-\boldsymbol{x}$	deducted x marks for mis-read
isw	ignored subsequent working
bod	gave benefit of doubt
$\mathbf{w r}$	work replaced by candidate

Application of mark scheme

Correct answer without working	mark as in scheme
Incorrect answer without working	zero marks unless specified

Award method and accuracy marks as appropriate to an alternative solution using a correct method or partially correct method.

GCE Use of Mathematics

Advanced Subsidiary: Applying Mathematics Paper 2 (UOM4/2)
June 2004

Answers and Marking Scheme

Question 1

(a)(i)

(ii)		B2	
(c)		M1 A1	General shape of curve Passing through origin and only $h \geq 0$ Accept reversed axes with labelling
(d)	$h=\frac{h_{1}}{100}$ so $B M I=\frac{m}{h^{2}}=\frac{m}{\left(\frac{h_{1}}{100}\right)^{2}}=\frac{100^{2} m}{h_{1}^{2}}=\frac{10000 m}{h_{1}^{2}}$	M1 A1	
	TOTAL	12	

Question 2

(a)	$\begin{aligned} & v^{2}=20 \mu d \\ & 100=20 \mu \times 17.5 \\ & \mu=\frac{100}{20 \times 17.5}=\frac{100}{350}=0.286 \end{aligned}$	M1A1 A1	M1 for 10^{2} or 100 OR 17.5 Accept 0.29
(b)	$\begin{aligned} & v=\sqrt{20 \mu d} \\ & =\sqrt{20 \times 0.286 \times 28} \\ & =12.7 \end{aligned}$	M1 A1 A1 $\sqrt{ }$	Formula Accept 12.6...
(c)	$\frac{12.7}{0.447}=$ 28.3 mph Was not breaking the speed limit - less than 30 mph	M1 A1V A2 $\sqrt{ }$	Allow 28.18-28.52
(d)	Value of μ would be smaller therefore value of v would be smaller leading to confirming that driver should not be prosecuted	$\begin{aligned} & \mathrm{B} 2 \\ & \mathrm{E} 2 \sqrt{ } \end{aligned}$	(B1 if not gain B 2 for v smaller)
	TOTAL	14	

Question 3

(a)	$T=78 \mathrm{e}^{-0.02 \times 0}+18=78+18=96$	M1A1	(M1 for inserting $t=0$)
(b)	$T=18$	B2	B1 room temperature
(c)		M1 Alv A1V	General shape Intercept with vertical axis indicated and horizontal asymptote indicated with value given
(d)	Stretch in the vertical direction, scale factor 78 Followed by Translation in vertical direction by 18 units	B1 B1 B1 B1	SC3 incorrect order of operations
(e) (i)	A temperature of surroundings B initial temperature of cup of tea above room temperature	$\begin{aligned} & \text { B2 } \\ & \text { B2 } \end{aligned}$	B1 initial temperature
	TOTAL	15	

Question 4

Question 5

(a)(i) (ii)	$\begin{aligned} & A_{n+1}=A_{n}+A_{1} \\ & \therefore A_{2}=A_{1}+A_{1}=2 A_{1} \\ & A_{3}=A_{2}+A_{1}=3 A_{1} \\ & A_{4}=A_{3}+A_{1}=4 A_{1} \\ & \therefore A_{n}=n A_{1} \end{aligned}$	M1 A1 B1 B1 B1	M1 use of A_{1} for A_{n}
(b)(i)	$\begin{aligned} & A_{2}=2 A_{1} \\ & \therefore \frac{1}{4} \pi d_{2}^{2}=2 \times \frac{1}{4} \pi d_{1}^{2} \\ & d_{2}^{2}=2 d_{1}^{2} \end{aligned}$	M1 A1	M1 substitution $\frac{1}{4} \pi d^{2}$ in either side
(ii)	$\begin{aligned} & A_{n+1}=A_{\mathrm{n}}+A_{1} \\ & \frac{1}{4} \pi d_{n+1}^{2}=\frac{1}{4} \pi d_{n}^{2}+\frac{1}{4} \pi d_{1}^{2} \\ & d_{n+1}^{2}=d_{n}^{2}+d_{1}^{2} \\ & d_{n+1}=\sqrt{d_{n}^{2}+d_{1}^{2}} \end{aligned}$	M1 A1	
(iii)	n $d_{n} \mathrm{~cm}$ 1 8.00 2 11.31 3 13.86 4 16.00 5 17.89 6 19.60	B1 B1 B1	SC2 correct to 1 dp SC1 correct to integer condone 15.99 for 16
(iv)	Variations in natural conditions such as lack of or too much water or more sunshine or reaches natural limits	$\begin{aligned} & \text { B2 } \\ & \text { B1 } \end{aligned}$	first reason second reason (max B3)
	TOTAL	15	

