Statistics (MEI)

Advanced Subsidiary GCE
Unit G241: Statistics 1 (Z1)

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Annotations

Annotation in scoris	Meaning
\checkmark and \boldsymbol{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
\wedge	Omission sign
MR	Misread
Highlighting	
Other abbreviations in mark scheme	Meaning
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*	Method mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working

Subject-specific Marking Instructions

Annotations should be used whenever appropriate during your marking.
The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

C
The following types of marks are available.
M
A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B

Mark for a correct result or statement independent of Method marks.

E
A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
e The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question
$\mathrm{f} \quad$ Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.

Rules for replaced work
If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.
If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.
$\mathrm{h} \quad$ For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Question		Answer	Marks	Guidance	Additional Guidance
2	(iii)	New mean $=12.65+0.25=£ 12.90$ New sd $=£ 6.02$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	FT their mean Awrt 12.90 FT their sd (unless negative) Awrt 6.02	If candidate 'starts again' only award marks for CAO Allow sd unchanged (or similar)
3	(i)		G1 G1 G1 [3]	Do a vertical scan and give: First column Second column Final column	All indep All probs must be correct Without extra branches in final column Ignore anything before third set Allow labels 'win' and 'lose' in place of Jimmy and Alan respectively but if no labels, no marks
3	(ii)	$\begin{aligned} & \mathrm{P} \text { (Alan wins) } \\ & =(0.4 \times 0.3 \times 0.6)+(0.6 \times 0.4 \times 0.3)+(0.6 \times 0.6)=0.504 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	For any one 'correct' product For all three 'correct' products and no extras CAO	FT their tree for both M marks Provided correct number of terms in product(s) for both M1's
3	(iii)	$\mathrm{P}($ Ends after 4$)=(0.4 \times 0.7)+(0.6 \times 0.6)=0.28+0.36=0.64$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	For both products CAO	FT their tree for M mark but not for A mark Provided two terms in each product
4	(i)	Because $\mathrm{P}(T \mid M) \neq \mathrm{P}(T)$	$\begin{aligned} & \text { E1 } \\ & {[1]} \end{aligned}$	Or $0.8 \neq 0.55$	Or $\mathrm{P}(T \cap M)(=0.264) \neq \mathrm{P}(T) \times \mathrm{P}(M)$, provided 0.264 in (ii) Or $0.264 \neq 0.55 \times 0.33(=0.1815)$ Look out for complement methods, etc
4	(ii)	$\mathrm{P}(T \cap M)=\mathrm{P}(T \mid M) \times \mathrm{P}(M)=0.80 \times 0.33=0.264$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	For product CAO	A0 for 0.26

Question		Answer	Marks	Guidance	Additional Guidance
4	(iii)		G1 G1 G1 [3]	For two labelled intersecting circles For at least 2 correct probabilities. FT their $\mathrm{P}(T \cap M)$ For remaining probabilities. FT their $\mathrm{P}(T \cap M)$, providing probabilities between 0 and 1	Allow labels such as $\mathrm{P}(\mathrm{T})$ etc Allow other shapes in place of circles No need for 'box' FT from 0.1815 in (ii) gives $\mathbf{0 . 3 6 8 5}$, $0.1815,0.1485,0.3015$
5	(i)	$\begin{aligned} \mathrm{P}(X=1) & =\mathrm{P}(\mathrm{~g}, \mathrm{~b})+\mathrm{P}(\mathrm{~b}, \mathrm{~g})+\mathrm{P}(\mathrm{~b}, \mathrm{~b}, \mathrm{~g})+\mathrm{P}(\mathrm{~b}, \mathrm{~b}, \mathrm{~b}, \mathrm{~g}) \\ & =\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=\frac{11}{16} \end{aligned}$ OR $\begin{aligned} & \mathrm{P}(X=1)=1-\mathrm{P}(X \neq 1)=1-(\mathrm{P}(\mathrm{bbbb})+\mathrm{P}(\mathrm{ggb})+\mathrm{P}(\mathrm{gggb})+\mathrm{P}(\mathrm{gggg})) \\ & =1-\left(\frac{1}{16}+\frac{1}{8}+\frac{1}{16}+\frac{1}{16}\right)=\frac{11}{16} \end{aligned}$	M1 M1 A1 [3]	For any two correct fractions For all four correct fractions $N B$ Answer given	Must have correct ref to numbers of boys and girls, not just fractions With no extras Accept 0.6875 , not 0.688 . Watch for use of $\mathrm{B}(4,0.5) \mathrm{P}(X \leq 2)=0.6875$ which gets M0M0A0.

Question			Answer	Marks	Guidance	Additional Guidance
5	(ii)		$\begin{aligned} & \begin{aligned} \mathrm{E}(X) & =\left(0 \times \frac{1}{16}\right)+\left(1 \times \frac{11}{16}\right)+\left(2 \times \frac{1}{8}\right)+\left(3 \times \frac{1}{16}\right)+\left(4 \times \frac{1}{16}\right) \\ & =1 \frac{3}{8}=1.375 \end{aligned} \\ & \begin{aligned} & \mathrm{E}\left(X^{2}\right)=\left(0 \times \frac{1}{16}\right)+\left(1 \times \frac{11}{16}\right)+\left(4 \times \frac{1}{8}\right)+\left(9 \times \frac{1}{16}\right)+(16 \\ &\left.\times \frac{1}{16}\right) \end{aligned} \\ & \quad=2 \frac{3}{4}=2.75 \end{aligned}$	M1 A1 M1 M1 A1 [5]	For $\Sigma r p$ (at least 3 terms correct) A1 CAO Allow 1.38, not 1.4 For $\Sigma r^{2} p$ (at least 3 terms correct) M1dep for - their $E(X)^{2}$ A1 FT their E(X) provided $\operatorname{Var}(\mathrm{X})>0$ 0.86 , not 0.9	Allow 22/16 Use of $\mathrm{E}(X-\mu)^{2}$ gets M1 for attempt at $(x-\mu)^{2}$ should see $(-1.375)^{2},(-0.375)^{2},(0.625)^{2}$, $1.625^{2}, 2.625^{2}$ (if $\mathrm{E}(X)$ correct but FT their $\mathrm{E}(X)$) (all 5 correct for M1), then M1 for $\Sigma \mathrm{p}(x-\mu)^{2}$ (at least 3 terms correct) Division by 5 or other spurious value at end gives max M1A1M1M1A0, or M1A0M1M1A0 if $\mathrm{E}(X)$ also divided by 5 . Unsupported correct answers get 5 marks. Using $\mathbf{1 . 3 8}$ gets Var of $\mathbf{0 . 8 4 5 6}$ gets A1
6	(i)	(A)	$\begin{aligned} & \mathrm{X} \sim \mathrm{~B}(20,0.25) \\ & \mathrm{P}(4 \text { smokers })=\binom{20}{4} \times 0.25^{4} \times 0.75^{16}=0.1897 \end{aligned}$ OR Or from tables $=0.4148-0.2252=0.1896$	M1 M1 A1 M2 A1 [3]	For $0.25^{4} \times 0.75^{16}$ For $\binom{20}{4} \times p^{4} \times q^{16}$ CAO For $0.4148-0.2252$ CAO	With $p+q=1$ Also for 4845×0.00003915 Allow 0.19 or better See tables at the website http://www.mei.org.uk/files/pdf/formula bo ok mf2.pdf $\overline{0.189 \text { gets } A 0}$
6	(i)	(B)	$\mathrm{P}(3 \leq X \leq 6)=0.7858-0.0913=0.6945$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	For $(\mathrm{P}(X \leq 6)=) 0.7858$ seen For their 0.7858 0.0913 CAO	$\begin{aligned} & \text { Or } \mathrm{P}(X=3)+\mathrm{P}(X=4)+\mathrm{P}(X=5)+\mathrm{P}(X=6) \\ & =0.1339+0.1897+0.2023+0.1686= \end{aligned}$ 0.6945 . M1 for three correct terms (to 2sf). Accept 0.69 or better $\mathrm{P}(X \geq 3)-\mathrm{P}(X>6)=0.9087-0.2142=0.6945$ Gets M1 M1 A1

Question			Answer	Marks	Guidance	Additional Guidance
6	(i)	(C)	$\mathrm{E}(X)=n p=20 \times 0.25=5$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	CAO	
6	(ii)	(A)	Let $p=$ probability that a randomly selected student is a smoker $\begin{aligned} & \mathrm{H}_{0}: p=0.25 \\ & \mathrm{H}_{1}: p<0.25 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & {[3]} \end{aligned}$	For definition of p in context For H_{0} For H_{1} Allow complementary probabilities. Mark as per scheme. ie $H_{0}: p=0.75$ etc	Minimum needed for B 1 is $p=$ probability that student is a smoker. Allow $p=\mathrm{P}$ (student smokes) for B 1 Definition of p must include word probability (or chance or proportion or percentage or likelihood but NOT possibility). Preferably as a separate comment. However can be at end of H_{0} as long as it is a clear definition ' $p=$ the probability that student is a smoker.,NOT just a sentence 'probability is 0.25 ' $\mathrm{H}_{0}: \mathrm{p}($ student is a smoker $)=0.25, \mathrm{H}_{1}$: p (student is a smoker) <0.25 gets B0B1B1 Allow $\mathrm{p}=25 \%$, allow θ or π and ρ but not x. However allow any single symbol if defined Allow $\mathrm{H}_{0}=p=0.25$, Do not allow $\mathrm{H}_{0}: \mathrm{P}(X=x)=0.25, \mathrm{H}_{1}$: $\mathrm{P}(X=x)<0.25$ Do not allow H_{0} : $=0.25,=25 \%, \mathrm{P}(0.25)$, $\mathrm{p}(0.25), \mathrm{p}(x)=0.25, x=0.25$ (unless x correctly defined as a probability) Do not allow $\mathrm{H}_{1}: p \leq 0.25$, Do not allow H_{0} and H_{1} reversed for B marks but can still get E1 below Allow NH and AH in place of H_{0} and H_{1} For hypotheses given in words allow Maximum B0B1B1 and E1 below. Hypotheses in words must include probability (or chance or proportion or percentage) and the figure 0.25 oe.

Question			Answer	Marks	Guidance	Additional Guidance
6	(ii)	(B)	H_{1} has this form as the programme aims to reduce the proportion of smokers.	$\begin{aligned} & \text { E1 } \\ & \text { [1] } \end{aligned}$	Allow 'number' Allow 'aims for a reduction' or similar	E0 if H_{1} upper tail or two tailed
6	(iii)		$\begin{aligned} & \mathrm{P}(X \leq 1)=0.0243<5 \% \\ & \mathrm{P}(X \leq 2)=0.0913>5 \% \\ & \text { So critical region is }\{0,1\} \end{aligned}$	B1 B1 M1 A1 [4]	For $\mathbf{P}(\boldsymbol{X} \leq \mathbf{1})=0.0243$ For $\mathbf{P}(\boldsymbol{X} \leq \mathbf{2})=0.0913$ For at least one comparison with 5\% CAO for critical region dep on M1 and at least one B1	With full correct notation. Penalise once for eg $P(X=1), P(X=2)$ Allow any form of statement of CR eg $X \leq$ $1, X<2$, annotated number line, etc but not $\mathrm{P}(X \leq 1)$ NB USE OF POINT PROBABILITIES gets B0B0M0A0 If no working but correct CR , no marks See additional notes below the scheme for other possibilities
6	(iv)		3 does not lie in the critical region, so not significant, So there is not enough evidence to reject the null hypothesis and we conclude that there is not enough evidence to suggest that the percentage of smokers has decreased.	E1dep E1dep	For 3 not in CR or for not significant or reject \mathbf{H}_{1} For conclusion in context Condone omission of 'not enough evidence' in this case	Dep on correct CR, (correctly obtained) E0E0 for $\mathrm{P}(X=3)$ not in CR E0E0 if wrong working after 3 not in CR Alternative scheme $\mathrm{P}(\mathrm{X} \leq 3)=0.2252>5 \%$ so not sig etc. gets E 2 for complete method but E0 otherwise.
7	(i)		$\text { Percentage }=\frac{40}{200} \times 100=20$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	For 40 seen or implied CAO	
7	(ii)		$\begin{aligned} & \text { Median }=5.2 \mathrm{~kg} \\ & \mathrm{Q} 1=4.2 \quad \mathrm{Q} 3=5.8 \\ & \text { Inter-quartile range }=5.8-4.2=1.6 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & {[3]} \\ & \hline \end{aligned}$	For Q1 or Q3 For IQR	Allow 4.2 to 4.3 for Q1 Dep on both quartiles correct

Question		Answer	Marks	Guidance	Additional Guidance
7	(iii)	Lower limit $4.2-(1.5 \times 1.6)=1.8$ Upper limit $5.8+(1.5 \times 1.6)=8.2$ So there are one or more outliers (if any lamb weighs more than 8.2 kg) Should not be disregarded because: 'Nothing to suggest they are not genuine items of data' Allow other convincing reasons such as very few so will not make much difference	B1 B1 E1 E1 [4]	For 1.8 ft For 8.2 ft Dep on their 1.8 and 8.2 Allow any number of outliers ≤ 5 Indep Must give reason.	Any use of median $\pm 1.5 \mathrm{IQR}$ scores B 0 B 0 E0 E0 if say some outliers at bottom end, unless lower limit > $\mathbf{2 . 0}$ If FT leads to limits above 9.0 and below 2.0 then E0 No marks for ± 2 or 3 IQR With 4.3 and 5.8 lower $=2.05$ and upper $=8.05$ In this part FT their values from (ii) if sensibly obtained but not from location ie $12.5,37.5$ No marks for use of mean $\pm 2 \mathrm{~s}$
7	(iv)	Median for Welsh Mountain $=3.6$ IQR for Welsh Mountain $=0.8$ Welsh Mountain lambs have lower average weight than crossbred Welsh Mountain lambs also have lower variation in weight than crossbred	B1 B1 E1 indep E1 indep	Must imply average or CT, not just median. Allow generally lighter Must imply spread or variation, not just IQR or range Allow correct comment on consistency	FT their medians FT their IQRs Can get max B1B0E1E1 for use of range
7	(v)	Median unchanged IQR unchanged OR range or spread increased	E1 E1 [2]	even if used IQR in (iv)	E2 for 'Both comparisons remain the same' E1 for 'the range remains smaller'

Question		Answer	Marks	Guidance	Additional Guidance
7	(vi)	$\mathrm{P}(\mathrm{Crossbred}>3.9)=\frac{165}{200}$	B1		Allow 162 to 165 out of 200
		$\begin{aligned} & \mathrm{P}(\text { Welsh Mountain }>3.9)=\frac{1}{4} \\ & \mathrm{P}(\text { Both }>3.9)=\frac{165}{200} \times \frac{1}{4}=\frac{165}{800}=\frac{33}{160}=0.206 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \end{aligned}$	For product of their probabilities, provided one is correct CAO	Allow answers in range $\mathbf{0 . 2 0 2 5}$ to $\mathbf{0 . 2 0 6 2 5}$ with correct working
			$\begin{aligned} & \text { A1 } \\ & {[4]} \end{aligned}$		

NOTE RE OVER-SPECIFICATION OF ANSWERS

If answers are grossly over-specified, deduct the final answer mark in every case. Probabilities should also be rounded to a sensible degree of accuracy. In general final non probability answers should not be given to more than 4 significant figures. Allow probabilities given to 5 sig fig.

Additional notes re Q6 parts iii, iv:

Smallest critical region method for part (iii):

Smallest critical region that 1 could fall into has size 0.0243 gets B1,
Smallest critical region that 2 could fall has size 0.0913 gets B1, This is $>5 \%$ or above $<5 \%$ gets M1, A1 as per scheme
Use of k method with no probabilities quoted:
$\mathrm{P}(X \leq k)>5 \%$ and $\mathrm{P}(X \leq k-1)<5 \%$ followed by $k=2$ gets SC1
so CR is $\{0,1\}$ gets another SC1 dep on first SC1
Use of k method with one probability quoted:
Mark as per scheme $-\max \mathrm{B} 0 \mathrm{~B} 1 \mathrm{M} 1 \mathrm{~A} 1$
Two tailed test with $\mathrm{H}_{1}: p \neq 0.25$
Gets SC2 for fully correct FT with working as follows $\mathrm{P}(X \leq 1)=0.0243<0.025$ and $\mathrm{P}(X \geq 10)=0.0139>0.025 \mathrm{~B} 1 \mathrm{CR}$ is $\{0,1,10,11, \ldots, 20\}$
(iv) Final 2 marks Max M1A1.

Two tailed test done but with correct $\mathrm{H}_{1}: p<0.25$
(ii) gets max B1B1B1E1
(iii) if compare with 5% ignore work on upper tail and mark lower tail as per scheme but if include upper tail in CR then A0
if compare with 2.5% no marks B0B0M0A0
(iv) Final 2 marks can get M1A1 if correct CR, or SC2 if they start again, provided that they compare with 5%, not 2.5%.

Lower or upper tailed test with $\mathrm{H}_{1}: p>0.25$ and 6(ii)B wrong way around
(ii) gets max B1B1B0E0
(iii) no marks B0B0M0A0
(iv) Final 2 marks get M0A0

Lower tailed test with $\mathrm{H}_{1}: p>0.25$ and 6(ii)B right way around

(ii) gets max B1B1B0E0, note E0, not E1
(iii) and (iv) Mark as per scheme, so full marks possible

Line diagram method for (iii)
No marks unless some 0.0243 shown on diagram, then B1 for squiggly line between 1and 2 or on 1, B1dep for arrow pointing to left, M1 0.0243 seen on diagram from squiggly line or from 1, A1 for CR written down in words/symbols. . If $\mathbf{0 . 0 2 4 3}$ and $\mathbf{0 . 0 9 1 3}$ both seen and no other marks earned give B1.
(iv) M1A1 as per scheme

Bar chart method for (iii)
No marks unless 0.0243 shown on diagram, then B1 for line clearly on boundary between 1 and 2 or within 1 block, B1dep for arrow pointing to left, M1 0.0243 seen on diagram from boundary line or from 1, A1 for CR written down in words/ symbols. If $\mathbf{0 . 0 2 4 3}$ and $\mathbf{0 . 0 9 1 3}$ both seen and no other marks earned give B1.
(iv) M1A1 as per scheme.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

