RECOGNISING ACHIEVEMENT

GCE

Statistics (MEI)

Advanced Subsidiary GCE

Unit G241: Statistics 1 (Z1)

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk
$\left.\begin{array}{|l|l|l|l|l|}\hline & \text { SECTION A } & & \\ \hline \begin{array}{l}\text { Q1 } \\ \text { (i) }\end{array} & \begin{array}{l}1000 \times 0.013=13 \\ \text { Or } 0.2 \times 65=13 \text { Or } 0.2 \times 5 \times 13=13\end{array} & \begin{array}{l}\text { M1 } \\ \text { A1 } \\ \text { M1 for } 0.2 \times 65\end{array} & \mathbf{2} & \begin{array}{l}\text { Allow with or without working } \\ \text { For MR } 1000 \times 0.13=130 \text { Allow M1A0 } \\ \text { Allow M1A0 if extra terms added eg 1000 } \times 0.004 \\ \text { SC1 for } 1000 \times 0.014=14 \text { For whole calculation }\end{array} \\ \hline \text { (ii) } & \text { Positive } & \text { B1 } & \mathbf{1} \\ \hline \text { Allow }+ \text { ve but NOT skewed to the right } \\ \text { Do not allow 'positive correlation' }\end{array}\right]$

$\begin{aligned} & \text { Q3 } \\ & \text { (i) } \end{aligned}$	$\mathrm{P}(X=0)=0.75^{6}=0.178$	$\begin{aligned} & \text { M1 for } 0.75^{6} \\ & \text { A1 CAO } \end{aligned}$	2	Or from tables 0.1780 Or 729/4096 Allow 0.18 with working
(ii)	$\mathrm{E}(X)=n p=50 \times 0.178=8.9$	M1 for product A1 FT	2	FT their answer to (i) providing it's a probability NB A0 if subsequently rounded
		TOTAL	4	
Q4 (i)		G1 labelled linear scales on both axes G1 heights	2	Accept r or x for horizontal label and p or better for vertical including probability distribution Visual check only Allow G1G0 for points rather than lines Bars must not be wider than gaps for second G1 Condone vertical scale 1, 2, 3, 4, 5 and Probability (\times) 1/18 as label BOD for height of $r=0$ on vertical axis
(ii)	(A) If $X=1$, possible scores are $(1,2),(2,3),(3,4),(4,5)$, $(5,6)$ and $(2,1),(3,2),(4,3),(5,4),(6,5)$ (All are equally likely) so probability $=\frac{10}{36}=\frac{5}{18}$ (B) If $X=0$, possible scores are $(1,1),(2,2),(3,3),(4,4)$, $(5,5),(6,6)$ so probability $=\frac{6}{36}=\frac{1}{6}$	M1 A1 B1	2	Also M1 for a clear correct sample space seen with the ten 1's identified by means of circles or ticks oe soi. Must be convincing. No additional values such as 0,1 and 1,0 Do not allow ' just 10 ways you can have a difference of 1 so $10 / 36$ ' or equivalent SC 1 for possible scores are $(1,2),(2,3),(3,4),(4,5)$, $(5,6)$ so probability $=2 \times 5 \times 1 / 36$ with no explanation for $2 \times$ Also B1 for a clear correct sample space seen with the six 0 's identified by means of circles or ticks oe soi. Must be convincing. No additional values. Allow both dice must be the same so probability $=$ $6 / 36=1 / 6$. Allow $1 \times 1 / 6=1 / 6 \mathrm{BOD}$
(iii)	Mean value of $X=$ $0 \times \frac{1}{6}+1 \times \frac{5}{18}+2 \times \frac{2}{9}+3 \times \frac{1}{6}+4 \times \frac{1}{9}+5 \times \frac{1}{18}=1 \frac{17}{18}=1.94$	M1 for $\operatorname{\Sigma rp}$ (at least 3 terms correct) A1 CAO	2	Or 35/18 Division by 6 or other spurious factor gets MAX M1A0
		TOTAL	7	

Q5 (i)		G1 for two labelled intersecting circles G1 for at least 2 correct probabilities. G1 for remaining correct probabilities	3	Allow labels such as $\mathrm{P}(W)$ and $\mathrm{P}(F)$ Allow other sensible shapes in place of circles
(ii)	$\mathrm{P}(W) \times \mathrm{P}(F)=0.14 \times 0.41=0.0574 \neq \mathrm{P}(W \cap F)=0.11$ So not independent.	M1 for 0.41×0.14 A1 Condone dependent Must have full method www Must have either $\mathrm{P}(W \cap F)$ or 0.11	2	Answer of 0.574 gets Max M1A0 Omission of 0.0574 gets M1A0 Max Or: $\mathrm{P}(W \mid F)=0.11 / 0.41=0.268 \neq \mathrm{P}(W)(=0.14) \mathrm{M} 1$ for full working $\mathrm{P}(F \mid W)=0.11 / 0.14=0.786 \neq \mathrm{P}(F)(=0.41) \mathrm{M} 1$ for full working No marks without correct working
(iii)	$P(W \mid F)=\frac{P(W \cap F)}{P(F)}=\frac{0.11}{0.41}=\frac{11}{41}=0.268$ This is the probability that a randomly selected respondent works (part time), given that the respondent is female.	M1 for correct fraction A1 E1 For E1 must be in context - not just talking about events F and W	3	Allow 0.27 with working Allow $11 / 41$ as final answer Condone 'if' or 'when' for 'given that' but not the words 'and' or 'because' or 'due to' for E1. E1 (independent of M1): the order/structure must be correct i.e. no reverse statement Allow 'The probability that a randomly selected female respondent works part time' oe
		TOTAL	8	

Q6 (i)	$\begin{aligned} & \text { Mean }=\frac{1 \times 10+2 \times 40+3 \times 15+4 \times 5}{70}=\frac{155}{70}=2.214 \\ & \mathrm{~S}_{x x}= \\ & 1^{2} \times 10+2^{2} \times 40+3^{2} \times 15+4^{2} \times 5-\frac{155^{2}}{70}=385-343.21=41.79 \\ & \mathrm{~s}=\sqrt{\frac{41.79}{69}}=0.778 \end{aligned}$	M1 A1 CAO M1 for $\Sigma \mathrm{fx}^{2}$ s.o.i. M1 for attempt at $S_{x x}$ Dep on first M1 A1 CAO If 0.778 or better seen ignore previous incorrect working (calculator answer) Allow final answer to 2 sig fig (www)	5	For M1 allow sight of at least 3 double pairs seen from $1 \times 10+2 \times 40+3 \times 15+4 \times 5$ with divisor 70 . Allow answer of $155 / 70$ or 2.2 or 2.21 or $31 / 14$ oe For $155 / 70=$ eg 2.3 , allow A1 isw M1 for $1^{2} \times 10+2^{2} \times 40+3^{2} \times 15+4^{2} \times 5$ with at least three correct terms Using exact mean leads to $\mathrm{S}_{x x}=41.79, \mathrm{~s}=0.778$, Using mean 2.214 leads to $\mathrm{S}_{x x}=41.87, \mathrm{~s}=0.779$, Using mean 2.21 leads to $\mathrm{S}_{x x}=43.11$ and $\mathrm{s}=0.790$ Using mean 2.2 leads to $\mathrm{S}_{x x}=46.2$ and $\mathrm{s}=0.818$ Using mean 2 leads to $\mathrm{S}_{x x}=105$ and $\mathrm{s}=1.233$ All the above get M1M1A1 except the last one which gets M1M1A0 $\operatorname{RMSD}($ divisor n rather than $n-1)=\sqrt{ }(41.79 / 70)=$ 0.772 gets M1M1A0 Alternative method, award M1for at least 3 terms of and second M1 for all 4 terms of $(1-2.214)^{2} \times 10+(2-2.214)^{2} \times 40+(3-2.214)^{2} \times 15$ $+(4-2.214)^{2} \times 5(=41.79)$ NB Allow full credit for correct answers without working (calculator used)
(ii)	Mean would decrease Standard deviation would increase	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	Do not accept increase/decrease seen on their own - must be linked to mean and SD. Allow eg 'It would skew the mean towards zero' And eg 'It would stretch the SD' SC1 for justified argument that standard deviation might either increase or decrease according to number with no eggs ($n \leq 496$ increase, $n \geq 497$ decrease)
		TOTAL	7	

	SECTION B			
Q7 (i)	$X \sim \mathrm{~B}(20,0.15)$ (A) Either $\mathrm{P}(\boldsymbol{X}=1)=\binom{20}{1} \times 0.15^{1} \times 0.85^{19}=0.1368$ or $\begin{aligned} \mathrm{P}(X=1) & =\mathrm{P}(X \leq 1)-\mathrm{P}(X \leq 0) \\ & =0.1756-0.0388=0.1368 \end{aligned}$ (B) $\mathrm{P}(X \geq 2)=1-\mathrm{P}(X \leq 1)$ $=1-0.1756=0.8244$	M1 $0.15^{1} \times 0.85^{19}$ M1 $\binom{20}{1} \times p^{1} q^{19}$ A1 CAO OR: M2 for $0.1756-$ 0.0388 A1 CAO M1 for 1 - their 0.1756 A1 CAO	3	With $p+q=1$ Allow answer 0.137 with or without working or 0.14 if correct working shown See tables at the website http://www.mei.org.uk/files/pdf/formula book mf2.pdf For misread of tables $0.3917-0.1216=0.2701$ allow M1M1A0 also for $0.1304-0.0261=0.1043$ Provided 0.1756 comes from $\mathrm{P}(X=0)+\mathrm{P}(X=1)$ Allow answer 0.824 with or without working or 0.82 if correct working shown Point probability method: $\mathrm{P}(1)=0.1368, \mathrm{P}(0)=0.0388$ So $1-\mathrm{P}(X \leq 1)=1-0.1756$ gets M 1 then mark as per scheme M0A0 for $1-\mathrm{P}(X \leq 1)=1-0.4049=0.5951$ For misread of tables $1-0.3917=0.6083$ allow M1A1 also for $1-0.1304=0.8696$ provided consistent with part (A) OR M1A0 if formula used in part (A)

(ii)	Let $X \sim \mathrm{~B}(n, p)$ Let $p=$ probability of a 'no-show' (for population) $\begin{aligned} & \mathrm{H}_{0}: p=0.15 \\ & \mathrm{H}_{1}: p<0.15 \end{aligned}$ H_{1} has this form because the hospital management hopes to reduce the proportion of no-shows.	B1 for definition of p B1 for H_{0} B1 for H_{1} E1 Allow correct answer even if H_{1} wrong	4	Allow $p=\mathrm{P}$ (no-show) for B 1 Definition of p must include word probability (or chance or proportion or percentage or likelihood but NOT possibility). Preferably as a separate comment. However can be at end of H_{0} as long as it is a clear definition ' $p=$ the probability of no-show, NOT just a sentence 'probability is 0.15^{\prime} $\mathrm{H}_{0}: \mathrm{p}($ no-show $)=0.15, \mathrm{H}_{1}: \mathrm{p}($ no-show $)<0.15$ gets B0B1B1 Allow $\mathrm{p}=15 \%$, allow θ or π and ρ but not x. However allow any single symbol if defined Allow $\mathrm{H}_{0}=p=0.15$, Do not allow $\mathrm{H}_{0}: \mathrm{P}(X=x)=0.15, \mathrm{H}_{1}: \mathrm{P}(X=x)<0.15$ Do not allow $\mathrm{H}_{0}:=0.15,=15 \%, \mathrm{P}(0.15), \mathrm{p}(0.15)$, $\mathrm{p}(x)=0.15, x=0.15$ (unless x correctly defined as a probability) Do not allow $\mathrm{H}_{1}: p \leq 0.15$, Do not allow H_{0} and H_{1} reversed for B marks but can still get E1 Allow NH and AH in place of H_{0} and H_{1} For hypotheses given in words allow Maximum B0B1B1E1 Hypotheses in words must include probability (or chance or proportion or percentage) and the figure 0.15 oe.
(iii)	$\mathrm{P}(X \leq 1)=0.1756>5 \%$ So not enough evidence to reject H_{0}. Not significant. Conclude that there is not enough evidence to indicate that the proportion of no-shows has decreased. Note: use of critical region method scores M1 for region $\{0\}$ M1 for 1 does not lie in critical region, then A1 E1 as per scheme	M1 for probability seen, but not in calculation for point probability M1 dep for comparison A1 E1 dep for conclusion in context.	4	Zero for use of point prob- $\mathrm{P}(X=1)=0.1368$ Do NOT FT wrong H_{1} Allow accept H_{0}, or reject H_{1} Full marks only available if 'not enough evidence to...' oe mentioned somewhere Do not allow 'enough evidence to reject H_{1} ' for final mark but can still get 3/4 Upper end comparison: $1-0.1756=0.8244<95 \%$ gets M2 then A1E1 as per scheme

				Line diagram method M1 for squiggly line between 0 and 1 with arrow pointing to left, M1 0.0388 seen on diagram from squiggly line or from 0 , A1E1 for correct conclusion Bar chart method M1 for line clearly on boundary between 0 and 1 and arrow pointing to left, M1 0.0388 seen on diagram from boundary line or from 0 , A1E1 for correct conclusion
(iv)	$6<8$ So there is sufficient evidence to reject H_{0} Conclude that there is enough evidence to indicate that the proportion of no-shows appears to have decreased.	M1 for comparison seen A1 E1 for conclusion in context	3	Allow ' 6 lies in the CR' Do NOT insist on 'not enough evidence' here Do not FT wrong H_{1} : $\mathrm{p}>0.15$ but may get M1 In part (iv) ignore any interchanged H_{0} and H_{1} seen in part (ii)
(v)	For $n \leq 18, \mathrm{P}(X \leq 0)>0.05$ so the critical region is empty.	E1 for $\mathrm{P}(X \leq 0)>0.05$ E1 indep for critical region is empty	2	E1 also for sight of 0.0536 Condone $\mathrm{P}(X=0)>0.05$ or all probabilities or values, (but not outcomes) in table (for $n \leq 18$) >0.05 Or 'There is no critical region' For second E 1 accept ' H_{0} would always be accepted' Do NOT FT wrong H_{1} Use professional judgement - allow other convincing answers
		TOTAL	18	

(ii)	$\text { Median }=9.67$ $\mathrm{Q} 1=9.51 \quad \mathrm{Q} 3=9.83$ Inter-quartile range $=9.83-9.51=0.32$	B1 FT Allow answers between 9.66 and 9.68 without checking curve. Otherwise check curve. B1 FT for Q3 or Q1 B1 FT for IQR providing both Q1 and Q3 are correct Allow answers between 9.50 and 9.52 and between 9.82 and 9.84 without checking curve. Otherwise check curve.	3	Based on $25^{\text {th }}$ to $26^{\text {th }}$ value on a cumulative frequency graph ft their mid-point plot (not LCB's) approx 9.57 for m.p. plot Allow 9.56 to 9.58 without checking B0 for interpolation Based on $12^{\text {th }}$ to $13^{\text {th }}$ and $37^{\text {th }}$ to $38^{\text {th }}$ values on a cumulative frequency graph ft their mid -point plot (not LCB's) approx Q1 $=9.42$; $\mathrm{Q} 3=9.73$ Allow 9.41 to 9.43 and 9.72 to 9.74 without checking B0 for interpolation Allow correct IQR from graph if quartiles not stated Lines of best fit: B0 B0 B0 here.
(iii)	Lower limit $9.51-1.5 \times 0.32=9.03$ Upper limit $9.83+1.5 \times 0.32=10.31$ Thus there are no outliers in the sample.	B1 FT their $\mathrm{Q}_{1}, \mathrm{IQR}$ B1 FT their Q_{3}, IQR E1 NB E mark dep on both B marks	3	Any use of median $\pm 1.5 \mathrm{IQR}$ scores B0 B0 E0 If FT leads to limits above 9.1 or below 10.1 then E0 No marks for ± 2 or 3 IQR In this part FT their values from (ii) if sensibly obtained (eg from LCB plot) or lines of best fit, but not from location ie $12.5,37.5$ or cumulative fx's or similar. For use of mean $\pm 2 \mathrm{~s}$, Mean $=9.652, \mathrm{~s}=0.235$, Limits 9.182, 10.122 gets M1 for correct lower limit, M1 for correct upper limit, zero otherwise, but E0 since there could be outliers using this definition

(iv)	(A) $\mathrm{P}($ All 3 more than 9.5$)=\frac{38}{50} \times \frac{37}{49} \times \frac{36}{48}=0.4304$ $(=50616 / 117600=2109 / 4900)$	M1 for $38 / 50 \times$ (triple product) M1 for product of remaining fractions A1 CAO	3	$(38 / 50)^{3}$ which gives answer 0.4389 scores M1M0A0 so watch for this. M0M0A0 for binomial probability including 0.76^{100} but ${ }^{3} \mathrm{C}_{0} \times 0.24^{0} \times 0.76^{3}$ still scores M1 $(k / 50)^{3}$ for values of k other than 38 scores M0M0A0 $\frac{k}{50} \times \frac{(k-1)}{49} \times \frac{(k-2)}{48}$ for values of k other than 38 scores M1M0A0 Correct working but then multiplied or divided by some factor scores M1M0A0 Accept 0.43 with working and 0.430 without working $\operatorname{Or}\binom{38}{3},\binom{50}{3}=2109 / 4900=0.4304$ Allow unsimplified fraction as final answer 50616/117600
	(B) P (At least 2 more than 9.5 $\begin{aligned} & =3 \times \frac{38}{50} \times \frac{37}{49} \times \frac{12}{48}+0.4304 \\ & =3 \times 0.1435+0.4304 \\ & =0.4304+0.4304 \\ & =0.861 \end{aligned}$ $(=101232 / 117600=4218 / 4900=2109 / 2450)$	M1 for product of 3 correct fractions seen M1 for $3 \times$ a sensible triple or sum of 3 sensible triples M1 indep for +0.4304 FT (providing it is a probability) A1 CAO	4	$\operatorname{Or}\binom{38}{2}\binom{12}{1} /\binom{50}{3}=0.4304$ gets first two M1M1's SC1 for $3 \times \frac{38}{50} \times \frac{38}{50} \times \frac{12}{50}$ or other sensible triple and SC 2 if this + their $0.4304(=0.8549)$ Allow 0.86 or $2109 / 2450$ or $4218 / 4900$, but only M3A0 for other unsimplified fractions
	OR $\mathrm{P}($ At least 2 more than 9.5$)=1-(\mathrm{P}(0)+\mathrm{P}(1))$ $\begin{aligned} & =1-\left[\left(\frac{12}{50} \times \frac{11}{49} \times \frac{10}{48}\right)+\left(3 \times \frac{12}{50} \times \frac{11}{49} \times \frac{38}{48}\right)\right] \\ & =1-[0.01122+0.12796]=1-0.13918=0.861 \end{aligned}$	M1 for $12 / 50 \times 11 / 49 \times 38 / 48$ M1 for $3 \times$ a sensible triple or sum of 3 sensible triples M1 dep on both previous M1's for $1-[0.01122+0.12796]$ A1 CAO		Use of 1 - method 'with replacement' SC 1 for $3 \times \frac{12}{50} \times \frac{12}{50} \times \frac{38}{50}$ SC2 for whole of $1-3 \times \frac{12}{50} \times \frac{12}{50} \times \frac{38}{50}+\frac{12}{50} \times \frac{12}{50} \times \frac{12}{50}$ $(=1-(0.1313+0.0138)=1-0.1451=0.8549)$
		TOTAL	18	

NOTE RE OVER-SPECIFICATION OF ANSWERS

If answers are grossly over-specified (see instruction 8), deduct the final answer mark in every case. Probabilities should also be rounded to a sensible degree of accuracy. In general final non probability answers should not be given to more than 4 significant figures. Allow probabilities given to 5 sig fig. In general accept answers which are correct to 3 significant figures when given to 4 or 5 significant figures.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

