

Statistics (MEI)

Advanced Subsidiary GCE G242

Statistics 2 (Z2)

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Q1						
i)	H ₀ : there is no assoc	iation betw	ween warb	ler and tree	B1	
	H_1 : there is an association between warbler and tree					
	Expected frequencies					
		Willow	Birch	Oak		
	Chiffchaff	15.695	16.340	10.965		
	Willow Warbler	34.310	35.720	23.970	M1	
	Whitethroat	22.995	23.940	16.065	A1	
	Contributions to X^2					
		Willow	Birch	Oak		
	Chiffchaff	2.0665	0.6827	7.4447		
	Willow Warbler	0.6411	1.4837	5.9775	M1	
	Whitethroat	0.0439	0.6484	0.5362	A1	
	$X^2 = 19.525$				A1	
	4 degrees of freedom				B1	
	Critical value for 5% significance level is 9.488				B1	
	As $19.525 > 9.488$ the result is significant				M1	
	rts 19.525 × 9.400 the result is significant				A1	
	There is evidence of an association between the warbler				r A1	11
	and tree.				111	
ii)	Chiffchaffs occurred more frequently than expected in				E1	
	Oak trees.					
	Willow Warblers occurred less frequently than expected				d E1	
	in Oak trees.					
	Whitethroat occurred	more or	less as exp	ected.	E1	3
(iii)	P(Birch Whitethroat) = 20/63				M1	2
111)						
.11)					A1	

Q2			
(i)	This is a small sample	B1	
	The variance is unknown	B1	
	We must assume birth weights are Normally	B1	3
	distributed		
(ii)	Estimate for population mean = 2965 g	B1	
	Estimate for population standard deviation		
	25580	M1	
	$106593000 - \frac{35380}{12}$	A1 CAO	
	$=\sqrt{\frac{106593000 - \frac{35580}{12}}{11}}$		
	= 315.983 = 316 to 3 sf		3
	- 515.985 510 10 5 81		
(iii)	$H_0: \mu = 2800 \& H_1: \mu > 2800$	B1 B1	
()	Where μ represents the population mean birth weight		
	of babies born after the introduction of the prenatal	B1	
	care programme.		
	2965 - 2800 = 1,800 (using SD = 216)	M1	
	$t = \frac{2965 - 2800}{SD / \sqrt{12}} = 1.809 \text{ (using SD} = 316)$	A1 CAO	
	11 degrees of freedom	B1	
	At 5% level, critical value of <i>t</i> is 1.796	B1	
	1.809 > 1.796 so the result is significant.	M1A1	
	Evidence suggests the mean birth weight has		
	increased.	A1	
			10
			16

Q3			
(i) <i>A</i>	$\sum fx \div \sum f = 360 \div 150 (= 2.4 \text{ A.G.})$	M1 A1	2
В	Variance = $1.734^2 = 3.0067$, which seems close	B1	
	to the mean value of 2.4.		
	A Poisson model may be appropriate.	E1(compare mean with variance – allow arguments either way, with relevant conclusion)	2
(ii)	H ₀ : The Poisson model is suitable		
	$P(X=1) = 0.2177 \& P(X \ge 6) = 0.0357$	B1 (both probabilities)	
	Missing expected frequencies are		
	32.655 ($x = 1$), and 5.355 ($x \ge 6$)	M1 A1 (expected freq)	3
	Missing contributions are 4.4421 ($x = 2$) and	M1 A1	
	1.7232 (x = 3)		
	$X^2 = 13.7441$	Al	3
	There are $7 - 1 - 1 = 5$ degrees of freedom.	B1	
	At the 5% significance level the critical value is 11.07	B1	
	The result is significant	B1	
	Evidence suggests that the Poisson model is	B1	4
	inappropriate.		
			14

Q4			
	H_0 : population median = 210	B1	
	H ₁ : population median $\neq 210$	B1	2
	Actual differences		
	33 41 8 17 -5 22 -12 14 -23 54	B1	
	Associated ranks		
	8 9 2 5 1 6 3 4 7 10	M1 A1	
	T = 1 + 3 + 7 = 11	B1	
	$T^+ = 8 + 9 + 2 + 5 + 6 + 4 + 10 = 44$	B1	
	$\therefore T = 11$	B1	6
	From $n = 10$ tables – at the 5% level of significance in	M1 (use of $n = 10$ in	
	a two-tailed Wilcoxon single sample test, the critical	tables)	
	value of <i>T</i> is 8	A1	
		M1 A1	
	11 > 8 : the result is not significant		
	The evidence does not suggest that there is a		
	difference between the median dive duration of	E1	
	adolescent seals and the seal population as a whole.		5
			13

Q5			
(i)	$P(X < 500) = P(Z < \frac{500 - 502}{1.29}) = P(Z < -1.550)$	M1 standardising	
	$1 - \Phi(1.550) = 1 - 0.9394 = 0.0606$ (awrt 0.061)	M1 correct tail A1	3
(ii)	From tables $\Phi^{-1}(0.99) = 2.326$	B1 for 2.326 seen M1 for equation in μ and	
	$\frac{500 - \mu}{1.29} = -2.326$	negative z-value	
	$\mu = 500 + 2.326 \times 1.29 = 503$	A1	3
(iii)	$9.05 \pm 1.96 \times 0.06$	B1 centred on 9.05	
	$9.05 \pm 1.96 imes rac{0.06}{\sqrt{40}}$	B1 for 1.96	
	(9.03, 9.07)	M1 structure	_
		A1 A1	5
(iv)	As the lower limit of the interval in part (iii) is more than 9 gallons, this does not suggest that the mean	E1	
	volume is below 9 gallons for this month.	E1	
	Allow sensible alternatives		2
			13

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

