

Statistics (MEI)

Advanced Subsidiary GCE G241

Statistics 1 (Z1)

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

G241

Q1 (i)	Positive skewness				B1	1
(ii)	Inter-quartile range = $10.3 - 8.0 = 2.3$				B1	
	Lower limit $8.0 - 1.5 \times 2.3 = 4.55$ Upper limit $10.3 + 1.5 \times 2.3 = 13.75$				M1 for $8.0 - 1.5 \times 2.3$ M1 for $10.3 + 1.5 \times 2.3$	
	Lowest value is 7 Highest value is 1	7.6 so at leas	A1 A1			
(iií)	Any suitable answ Eg minimum wage		E1 one comment relating to low earners			
	Highest wage earn specialist worker o	•	-	E1 one comment relating to high earners	2	
					TOTAL	8
Q2	4k + 6k + 6k + 4k = 1				M1	
(i)	20k = 1 k = 0.05				A1 NB Answer given	2
(ii)	E(X) = $1 \times 0.2 + 2 \times 0.3 + 3 \times 0.3 + 4 \times 0.2 = 2.5$ (or by inspection)				M1 for Σrp (at least 3 terms correct) A1 CAO	
	$E(X^{2}) = 1 \times 0.2 + 4 \times 0.3 + 9 \times 0.3 + 16 \times 0.2 = 7.3$ $Var(X) = 7.3 - 2.5^{2} = 1.05$				M1 for $\Sigma r^2 p$ (at least 3 terms correct) M1dep for – their E(X) ² A1 FT their E(X)	5
			provided Var(X) > 0 TOTAL	7		
Q3						'
(i)	$\begin{array}{ l l l l l l l l l l l l l l l l l l l$	Frequency 24	Width 20	FD 1.2	M1 for fds A1 CAO	
	$20 < x \le 30$	13	10	1.3	Accept any suitable unit	
	$30 < x \le 50$	14	20	0.7	for fd such as eg freq	
	$50 < x \le 65$	21	15	1.4	per 10 hours.	
	$65 < x \le 100$	18	35	0.51		
	1.4 FD				L1 linear scales on both axes and label on vert axis	5
		40 50	60 70 80	Lifetime 90 100	W1 width of bars H1 height of bars	

G241

(ii)	Median lies in third class interval $(30 < x \le 50)$	B1 CAO	
	Median = 45.5th lifetime (which lies beyond 37 but not as far as 51)	E1 <i>dep</i> on B1	2
		TOTAL	7
Q4 (i)	$1 \times \frac{1}{5} = \frac{1}{5}$	M1 A1	2
(ii)	$1 \times \frac{4}{5} \times \frac{3}{5} \times \frac{2}{5} \times \frac{1}{5} = \frac{24}{625} = 0.0384$	M1 For $1 \times \frac{4}{5} \times or just \frac{4}{5} \times$	
		M1 <i>dep</i> for fully correct product A1	3
(iii)	1 - 0.0384 = 0.9616 or $601/625$	B1	1
05	Mean =	TOTAL	6
Q5 (i)	$\frac{0 \times 37 + 1 \times 23 + 2 \times 11 + 3 \times 3 + 4 \times 0 + 5 \times 1}{75} = \frac{59}{75} = 0.787$	M1 A1	
	$S_{xx} = 0^{2} \times 37 + 1^{2} \times 23 + 2^{2} \times 11 + 3^{2} \times 3 + 4^{2} \times 0 + 5^{2} \times 1 - \frac{59^{2}}{75} = 72.59$	M1 for Σfx^2 s.o.i.	
	$s = \sqrt{\frac{72.59}{74}} = 0.99$	M1 <i>dep</i> for good attempt at S_{xx} BUT NOTE M1M0 if their $S_{xx} < 0$	5
	$s = \sqrt{\frac{74}{74}} = 0.99$	A1 CAO	
(ii)	New mean = $0.787 \times \pounds 1.04 = \pounds 0.818$ or 81.8 pence	B1 ft their mean	
	New s = $0.99 \times \pounds 1.04 = \pounds 1.03$ or 103 pence	B1 ft their s	3
		B1 for correct units <i>dep</i> on at least 1 correct (ft)	
		TOTAL	8
	Section B		
Q6	X ~ B(18, 0.1)		
(i)	(A) P(2 faulty tiles) = $\binom{18}{2} \times 0.1^2 \times 0.9^{16} = 0.2835$	M1 $0.1^2 \times 0.9^{16}$ M1 $\binom{18}{2} \times p^2 q^{16}$	
	OR from tables $0.7338 - 0.4503 = 0.2835$	A1 CAO OR: M2 for 0.7338 –	3
	(B) P(More than 2 faulty tiles) $= 1 - 0.7338 = 0.2662$	0.4503 A1 CAO M1 P($X \le 2$)	
		M1 dep for 1-P($X \le 2$) A1 CAO	3

	(<i>C</i>) $E(X) = np = 18 \times 0.1 = 1.8$	M1 for product 18×0.1 A1 CAO	2
(ii)	 (A) Let p = probability that a randomly selected tile is faulty H₀: p = 0.1 H₁: p > 0.1 (B) H₁ has this form as the manufacturer believes that the number of faulty tiles may <u>increase</u>. 	 B1 for definition of <i>p</i> in context B1 for H₀ B1 for H₁ E1 	3
(iii)	Let $X \sim B(18, 0.1)$ $P(X \ge 4) = 1 - P(X \le 3) = 1 - 0.9018 = 0.0982 > 5\%$ $P(X \ge 5) = 1 - P(X \le 4) = 1 - 0.9718 = 0.0282 < 5\%$ So critical region is {5,6,7,8,9,10,11,12,13,14,15,16,17,18}	B1 for 0.0982 B1 for 0.0282 M1 for at least one comparison with 5% A1 CAO for critical region <i>dep</i> on M1 and at least one B1	4
(iv)	4 does not lie in the critical region, (so there is insufficient evidence to reject the null hypothesis and we conclude that there is not enough evidence to suggest that the number of faulty tiles has increased.	M1 for comparison A1 for conclusion in context TOTAL	2
07		IOTAL	18
Q7 (i)	100 100 0.95 0.05 $0.$	 G1 first set of branches G1 <i>indep</i> second set of branches G1 <i>indep</i> third set of branches G1 labels 	4

(ii)	(A) P(all on time) = $0.95^3 = 0.8574$	M1 for 0.95 ³ A1 CAO	2
	(B) P(just one on time) = $0.95 \times 0.05 \times 0.4 + 0.05 \times 0.6 \times 0.05 + 0.05 \times 0.4 \times 0.6$ = 0.019 + 0.0015 + 0.012 = 0.0325	M1 first term M1 second term M1 third term A1 CAO	4
	(C) P(1200 is on time) = $0.95 \times 0.95 \times 0.95 + 0.95 \times 0.05 \times 0.6 + 0.05 \times 0.6 \times 0.95 + 0.05 \times 0.4 \times 0.6 = 0.857375 + 0.0285 + 0.0285 + 0.012 = 0.926375$	M1 any two terms M1 third term M1 fourth term A1 CAO	4
(iii)	P(1000 on time given 1200 on time) = P(1000 on time and 1200 on time) / P(1200 on time) = $\frac{0.95 \times 0.95 \times 0.95 + 0.95 \times 0.05 \times 0.6}{0.926375} = \frac{0.885875}{0.926375} = 0.9563$	M1 either term of numerator M1 full numerator M1 denominator A1 CAO	4
		Total	18

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2010

