GCE

Statistics (MEI)

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Q1 (i)	Positive skewness				B1	1
(ii)	Inter-quartile range $=10.3-8.0=2.3$ Lower limit $8.0-1.5 \times 2.3=4.55$ Upper limit $10.3+1.5 \times 2.3=13.75$ Lowest value is 7 so no outliers at lower end Highest value is 17.6 so at least one outlier at upper end.				B1 M1 for $8.0-1.5 \times 2.3$ M1 for $10.3+1.5 \times 2.3$ A1 A1	5
(iii)	Any suitable answers Eg minimum wage means no very low values Highest wage earner may be a supervisor or manager or specialist worker or more highly trained worker				E1 one comment relating to low earners E1 one comment relating to high earners	
					TOTAL	8
Q2 (i)	$\begin{aligned} & 4 k+6 k+6 k+4 k=1 \\ & 20 k=1 \\ & k=0.05 \end{aligned}$				M1 A1 NB Answer given	2
(ii)	$\mathrm{E}(\mathrm{X})=1 \times 0.2+2 \times 0.3+3 \times 0.3+4 \times 0.2=2.5$ (or by inspection) $\mathrm{E}\left(\mathrm{X}^{2}\right)=1 \times 0.2+4 \times 0.3+9 \times 0.3+16 \times 0.2=7.3$ $\operatorname{Var}(\mathrm{X})=7.3-2.5^{2}=1.05$				M1 for $\Sigma r p$ (at least 3 terms correct) A1 CAO M1 for $\Sigma r^{2} p$ (at least 3 terms correct) M1dep for - their $\mathrm{E}(\mathrm{X})^{2}$ A1 FT their $\mathrm{E}(\mathrm{X})$ provided $\operatorname{Var}(\mathrm{X})>0$	5
					TOTAL	7
Q3 (i)	Lifetime (x hours) $\begin{gathered} 0<x \leq 20 \\ \hline 20<x \leq 30 \\ \hline 30<x \leq 50 \\ \hline 50<x \leq 65 \\ \hline 65<x \leq 100 \\ \hline \end{gathered}$	Frequency 24 13 14 21 18	Width 20 10 20 15 35 	FD 1.2 1.3 0.7 1.4 0.51	M1 for fds A1 CAO Accept any suitable unit for fd such as eg freq per 10 hours. L1 linear scales on both axes and label on vert axis W1 width of bars H1 height of bars	5

(ii)	Median lies in third class interval ($30<x \leq 50$) Median $=45.5$ th lifetime (which lies beyond 37 but not as far as 51)	B1 CAO E1 dep on B1	2
		TOTAL	7
Q4 (i)	$1 \times \frac{1}{5}=\frac{1}{5}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	2
(ii)	$1 \times \frac{4}{5} \times \frac{3}{5} \times \frac{2}{5} \times \frac{1}{5}=\frac{24}{625}=0.0384$	M1 For $1 \times \frac{4}{5} \times \text { or just } \frac{4}{5} \times$ M1 dep for fully correct product A1	3
(iii)	$1-0.0384=0.9616$ or $601 / 625$	B1	1
		TOTAL	6
$\begin{aligned} & \text { Q5 } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \text { Mean }= \\ & \frac{0 \times 37+1 \times 23+2 \times 11+3 \times 3+4 \times 0+5 \times 1}{75}=\frac{59}{75}=0.787 \\ & \mathrm{~S}_{x x}= \\ & 0^{2} \times 37+1^{2} \times 23+2^{2} \times 11+3^{2} \times 3+4^{2} \times 0+5^{2} \times 1-\frac{59^{2}}{75}=72.59 \\ & \mathrm{~s}=\sqrt{\frac{72.59}{74}}=0.99 \end{aligned}$	M1 A1 M1 for $\Sigma \mathrm{fx}^{2}$ s.o.i. M1 dep for good attempt at $\mathrm{S}_{x x}$ BUT NOTE M1M0 if their $S_{x x}<0$ A1 CAO	5
(ii)	New mean $=0.787 \times £ 1.04=£ 0.818$ or 81.8 pence New $s=0.99 \times £ 1.04=£ 1.03$ or 103 pence	B 1 ft their mean B1 ft their s B1 for correct units dep on at least 1 correct (ft)	3
		TOTAL	8
	Section B		
Q6 (i)	$\mathrm{X} \sim \mathrm{~B}(18,0.1)$ (A) $\mathrm{P}(2$ faulty tiles $)=\binom{18}{2} \times 0.1^{2} \times 0.9^{16}=0.2835$ OR from tables $\quad 0.7338-0.4503=0.2835$ (B) $\mathrm{P}($ More than 2 faulty tiles $)=1-0.7338=0.2662$	M1 $0.1^{2} \times 0.9^{16}$ M1 $\binom{18}{2} \times p^{2} q^{16}$ A1 CAO OR: M2 for 0.7338 0.4503 A 1 CAO M1 $\mathrm{P}(X \leq 2)$ M1 dep for $1-\mathrm{P}(\mathrm{X} \leq 2)$ A1 CAO	3 3

	(C) $\mathrm{E}(X)=n p=18 \times 0.1=1.8$	M1 for product 18×0.1 A1 CAO	2
(ii)	(A) Let $p=$ probability that a randomly selected tile is faulty $\begin{aligned} & \mathrm{H}_{0}: p=0.1 \\ & \mathrm{H}_{1}: p>0.1 \end{aligned}$	B1 for definition of p in context B1 for H_{0} B1 for H_{1}	3
	(B) H_{1} has this form as the manufacturer believes that the number of faulty tiles may increase.	E1	1
(iii)	$\begin{aligned} & \text { Let } X \sim \mathrm{~B}(18,0.1) \\ & \mathrm{P}(X \geq 4)=1-\mathrm{P}(X \leq 3)=1-0.9018=0.0982>5 \% \\ & \mathrm{P}(X \geq 5)=1-\mathrm{P}(X \leq 4)=1-0.9718=0.0282<5 \% \end{aligned}$ So critical region is $\{5,6,7,8,9,10,11,12,13,14,15,16,17,18\}$	B1 for 0.0982 B1 for 0.0282 M1 for at least one comparison with 5\% A1 CAO for critical region dep on M1 and at least one B1	4
(iv)	4 does not lie in the critical region, (so there is insufficient evidence to reject the null hypothesis and we conclude that there is not enough evidence to suggest that the number of faulty tiles has increased.	M1 for comparison A1 for conclusion in context	2
		TOTAL	18
Q7 (i)		G1 first set of branches G1 indep second set of branches G1 indep third set of branches G1 labels	4

(ii)	(A) $\mathrm{P}($ all on time $)=0.95^{3}=0.8574$ (B) $\mathrm{P}($ just one on time $)=$ $\begin{aligned} & 0.95 \times 0.05 \times 0.4+0.05 \times 0.6 \times 0.05+0.05 \times 0.4 \times 0.6 \\ & =0.019+0.0015+0.012=0.0325 \end{aligned}$ (C) $\mathrm{P}(1200$ is on time $)=$ $\begin{aligned} & 0.95 \times 0.95 \times 0.95+0.95 \times 0.05 \times 0.6+0.05 \times 0.6 \times 0.95+ \\ & 0.05 \times 0.4 \times 0.6=0.857375+0.0285+0.0285+0.012=0.926375 \end{aligned}$	M1 for 0.95^{3} A1 CAO M1 first term M1 second term M1 third term A1 CAO M1 any two terms M1 third term M1 fourth term A1 CAO	2 4 4
(iii)	$\mathrm{P}(1000$ on time given 1200 on time $)=$ $\mathrm{P}(1000$ on time and 1200 on time $) / \mathrm{P}(1200$ on time $)=$ $\frac{0.95 \times 0.95 \times 0.95+0.95 \times 0.05 \times 0.6}{0.926375}=\frac{0.885875}{0.926375}=0.9563$	M1 either term of numerator M1 full numerator M1 denominator A1 CAO	4
		Total	18

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

