

Statistics (MEI)

Advanced Subsidiary GCE AS H132

Mark Scheme for the Units

June 2009

H132/MS/R/09

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2009

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

CONTENTS

Advanced Subsidiary GCE Statistics (H132)

MARK SCHEMES FOR THE UNITS

Unit/Content	Page
G241 Statistics 1	1
G242 Statistics 2	5
G243 Statistics 3	8
Grade Thresholds	13

G241 Statistics 1

Q1 (i)	Median = 2 Mode = 1	B1 CAO B1 CAO	2
(ii)	60 50 40 30 20 10 1 2 3 4 Number of People	S1 labelled linear scales on both axes H1 heights	2
(iii)	Positive	B1	1
		TOTAL	5
Q2 (i)	$\binom{25}{5}$ different teams = 53130	M1 for $\begin{pmatrix} 25\\5 \end{pmatrix}$ A1 CAO	2
(ii)	$\binom{14}{3} \times \binom{11}{2} = 364 \times 55 = 20020$	M1 for either combination M1 for product of both A1 CAO	3
		TOTAL	5
Q3 (i)	Mean $=\frac{126}{12} = 10.5$	B1 for mean	
	$Sxx = 1582 - \frac{126^2}{12} = 259$	M1 for attempt at <i>Sxx</i>	3
	$s = \sqrt{\frac{259}{11}} = 4.85$	A1 CAO	
(ii)	New mean = $500 + 100 \times 10.5 = 1550$ New s = $100 \times 4.85 = 485$	B1 <u>ANSWER GIVEN</u> M1A1FT	3
(iii)	On average Marlene sells more cars than Dwayne. Marlene has less variation in monthly sales than Dwayne.	E1 E1FT	2
		TOTAL	8

June 2009

Q4 (i)	E(X) = 25 because the distribution is symmetrical. Allow correct calculation of Σrp	E1 <u>ANSWER GIVEN</u>	1
(ii)	$E(X^{2}) = 10^{2} \times 0.2 + 20^{2} \times 0.3 + 30^{2} \times 0.3 + 40^{2} \times 0.2 = 730$ Var(X) = 730 - 25 ² = 105	M1 for $\Sigma r^2 p$ (at least 3 terms correct) M1dep for -25^2 A1 CAO	3
		TOTAL	4
Q5 (i)	Distance freq width f dens 0- 360 50 7.200 50- 400 50 8.000 100- 307 100 3.070 200-400 133 200 0.665	 M1 for fds A1 CAO Accept any suitable unit for fd such as eg freq per 50 miles. L1 linear scales on both axes and label W1 width of bars H1 height of bars 	5
(ii)	Median = 600th distance Estimate = $50 + \frac{240}{400} \times 50 = 50 + 30 = 80$	B1 for 600 th M1 for attempt to interpolate A1 CAO	3
		TOTAL	8
Q6 (i)	(A) P(at most one) $=\frac{83}{100} = 0.83$	B1 aef	1
	(B) P(exactly two) = $\frac{10 + 2 + 1}{100} = \frac{13}{100} = 0.13$	M1 for (10+2+1)/100 A1 aef	2
(ii)	P(all at least one) = $\frac{53}{100} \times \frac{52}{99} \times \frac{51}{98} = \frac{140556}{970200} = 0.145$	M1 for $\frac{53}{100} \times$ M1 <i>dep</i> for product of next 2 correct fractions A1 CAO	3
		TOTAL	6

G241

Q7 (i)	a = 0.8, b = 0.85, c = 0.9.	B1 for any one B1 for the other two	2
(ii)	$P(Not delayed) = 0.8 \times 0.85 \times 0.9 = 0.612$	M1 for product A1 CAO	
	$P(Delayed) = 1 - 0.8 \times 0.85 \times 0.9 = 1 - 0.612 = 0.388$	M1 for 1 – P(delayed) A1FT	4
(iii)	P(just one problem) = $0.2 \times 0.85 \times 0.9 + 0.8 \times 0.15 \times 0.9 + 0.8 \times 0.85 \times 0.1$ = $0.153 + 0.108 + 0.068 = 0.329$	B1 one product correct M1 three products M1 sum of 3 products A1 CAO	4
(iv)	$P(\text{Just one problem delay}) = \frac{P(\text{Just one problem and delay})}{P(\text{Delay})} = \frac{0.329}{0.388} = 0.848$	M1 for numerator M1 for denominator A1FT	3
(v)	P(Delayed No technical problems) $Either = 0.15 + 0.85 \times 0.1 = 0.235$	M1 for 0.15 + M1 for second term A1CAO	
	$Or = 1 - 0.9 \times 0.85 = 1 - 0.765 = 0.235$	M1 for product M1 for 1 – product A1CAO	
	$Or = 0.15 \times 0.1 + 0.15 \times 0.9 + 0.85 \times 0.1 = 0.235$	M1 for all 3 products M1 for sum of all 3 products A1CAO	3
	Or (using conditional probability formula) <u>P(Delayed and no technical problems)</u> <u>P(No technical problems)</u>		
	$=\frac{0.8\times0.15\times0.1+0.8\times0.15\times0.9+0.8\times0.85\times0.1}{0.8}$	M1 for numerator M1 for denominator	
	$=\frac{0.188}{0.8}=0.235$	A1CAO	
(vi)	Expected number = $110 \times 0.388 = 42.7$	M1 for product A1FT	2
		TOTAL	18

Q8 (i)	$X \sim B(15, 0.2)$		
	(A) $P(X = 3) = {\binom{15}{3}} \times 0.2^3 \times 0.8^{12} = 0.2501$	M1 $0.2^3 \times 0.8^{12}$ M1 $\binom{15}{3} \times p^3 q^{12}$ A1 CAO	3
	OR from tables $0.6482 - 0.3980 = 0.2502$	OR: M2 for 0.6482 – 0.3980 A1 CAO	
	(B) $P(X \ge 3) = 1 - 0.3980 = 0.6020$	M1 $P(X \le 2)$ M1 1 - $P(X \le 2)$ A1 CAO	3
	(C) $E(X) = np = 15 \times 0.2 = 3.0$	M1 for product A1 CAO	2
(ii)	 (A) Let p = probability of a randomly selected child eating at least 5 a day H₀: p = 0.2 H₁: p > 0.2 (B) H₁ has this form as the proportion who eat at least 5 a day is expected to <u>increase</u>. 	B1 for definition of p in context B1 for H ₀ B1 for H ₁ E1	4
(iii)	Let $X \sim B(15, 0.2)$ $P(X \ge 5) = 1 - P(X \le 4) = 1 - 0.8358 = 0.1642 > 10\%$ $P(X \ge 6) = 1 - P(X \le 5) = 1 - 0.9389 = 0.0611 < 10\%$ So critical region is {6,7,8,9,10,11,12,13,14,15}	B1 for 0.1642 B1 for 0.0611 M1 for at least one comparison with 10% A1 CAO for critical region <i>dep</i> on M1 and at least one B1	6
	7 lies in the critical region, so we reject null hypothesis and we conclude that there is evidence to suggest that the proportion who eat at least five a day has increased.	M1 <i>dep</i> for comparison A1 <i>dep</i> for decision and conclusion in context	
		TOTAL	18

G242 Statistics 2

Q1						
(i)	H_0 : there is no association between area and quality H_1 : there is an association between area and quality				B1	1
(ii)	Expected frequencies					
		Area A	Area B	Area C		
	Excellent	26.04	27.72	30.24		
	Good	39.68	42.24	46.08	M1	
	Satisfactory	27.28	29.04	31.68	A1	
	Contributions to X^2					
		Area A	Area B	Area C		
	Excellent	3.8096	3.4083	0.0019		
	Good	0.3413	1.4256	0.3613	M1	
	Satisfactory	1.4457	0.1323	0.5891	M1	
	$X^2 = 11.5150$ 4 degrees of freedom Critical value for 5% significance level is 9.488 As $11.5150 > 9.488$ the result is significant				A1 CAO B1 B1 M1A1	
	There is evidence of an association between the area where grapes grow and their quality.				A1	10
(iii)	Large contribution of 3.8096 shows there were more excellent quality grapes than expected in Area A. Large contribution of 3.4083 shows there were fewer excellent				E1	
	grapes than expected in Area C show that grape expected.		E1 E1	3		

Q2			
(i)(A)	$P(X < 25) = P(Z < \frac{25 - 25.2}{0.1}) = P(Z < -2)$	M1 standardising	
	$1 - \Phi(2) = 1 - 0.9772 = 0.0228$	M1 correct tail A1	3
(i)(<i>B</i>)	$1 - p^5$ where p = 0.9772 = 0.1089	M1 M1 A1	3
(ii)(A)	$\frac{33544 - \frac{1295^2}{50}}{49} = 0.07143 \text{ (AG)}$	M1 A1	2
(ii)(<i>B</i>)	$25.9 \pm 1.96 \times \frac{\sqrt{0.07143}}{\sqrt{50}}$ (25.83, 25.97)	M1 centred on 25.9 M1 structure (S.E.) B1 (1.96) A1 CAO	4
(ii)(<i>C</i>)	This interval does not contain 25 kg. This suggests that the mean amount of coal delivered could be greater than 25 kg.	E1 E1 (mean) E1 (greater) allow sensible alternatives	3

Q3			
(i)	H_0 : population median = 23 H_1 : population median < 23	B1 B1	
	Actual differences -9 +10 -11 -12 -17 -7 +4 -5 +6 -15 -14 -3 Associated ranks	B1	
	6 7 8 9 12 5 2 3 4 11 10 1	M1 A1	
	T = 6 + 8 + 9 + 12 + 5 + 3 + 11 + 10 + 1 = 65 $T^{+} = 7 + 2 + 4 = 13$ $\therefore T = 13$	B1 B1 B1	
	From tables – at the 5% level of significance in a one- tailed Wilcoxon signed rank test, the critical value of T is 17	B1	
	13 < 17 the result is significant	M1 A1	
	The evidence suggests a decrease in the median waiting time with the new appointments system	E1	12
(ii)	Sample small and population variance unknown. <i>t</i> test	B1 B1	2

Q4			
(i)A	Sample mean = $312 \div 120$ (=2.6 AG)	M1 A1	2
(i) <i>B</i>	Variance = $1.880^2 = 3.5344$ Comparison of sample mean and variance with conclusion about suitability of Poisson model.	B1 E1 dep	2
(i) <i>C</i>	The observed frequencies would tail-off more in a Poisson model (or the observed frequency for $x = 5$ is too high) – hence a Poisson model may not be suitable.	E1 E1	2
(ii)	H ₀ : The Poisson model is suitable Missing expected frequencies are 8.832 ($x = 5$), and 5.88 ($x \ge 6$) Missing contributions are 1.4546 ($x = 4$) and 1.9670 ($x = 5$) $X^2 = 19.32(76)$ There are $7 - 1 - 1 = 5$ degrees of freedom. At the 5% significance level the critical value is 11.07 The result is significant Evidence suggests that the Poisson model is inappropriate.	M1 A1 A1 M1A1 A1 B1 B1 B1 B1 B1	10

Q5			
(i)	Estimate of population mean = 273 Estimate of population variance = 18.222	B1 B1	2
(ii)	H ₀ : $\mu = 268$ & H ₁ : $\mu > 268$ Where μ represents the population mean ball striking distance using clubs made from the new alloy. $t = \frac{273 - 268}{SD/\sqrt{10}} = 3.704 \text{ (4s.f.)}$	B1 (both) B1 M1 A1	
	9 degrees of freedom At 5% level, critical value of <i>t</i> is 1.833 3.704 > 1.833 so the result is significant. Evidence suggests the clubs made with the new alloy have a mean striking distance greater than 268 yards.	B1 B1 M1A1 A1	9
(iii)	Any suitable comments – e.g. wind speed/length of grass/type of ball will affect the distance travelled.	E1 E1	2

G243 Statistics 3

Q1					
(i)	H ₁ : $\mu > 0$ (or $\mu < 0$ if dominant - non dominant)			B1 B1 B1	Condone absence of "population" if correct notation " μ " has been used, but do NOT accept $\overline{X} = 0$ (or $\overline{X} = \overline{Y}$) or similar unless \overline{X} and \overline{Y} are clearly and explicitly stated to be <u>population</u> means. Accept hypothesis explained in words, provided "population"
	non 485 356 450 402 376 409 419 289 420 410 Test statistic is <i>n</i>	$\frac{\text{dom}}{336}$ 381 348 329 329 346 344 327 342 356 total mean sample SD $therefore = \frac{57.8}{55.17/\sqrt{1}}$	diff appears. 149 -25 102 73 47 63 75 M1 -38 78 54 578 57.8 awrt A1 55.17 awrt A1	appears. Follow-through incorrect value of test statistic	
	Critical region $t_9 > 1.833$ Since $3.31 > 1.833$ H ₀ is rejected, there is sufficient evidence to suggest that reaction times for the dominant hand are faster, on average, than for the non-dominant hand.			Alawrt M1 A1 A1 A1	fr <i>t</i> ₉ (No follow-through from here if wrong) for 1.833 (No follow-through from here if wrong)
	Assume Normality; of (population of) differences			B1 B1	
(ii)	e.g. possible "consistent order" or learning effect		E2 (E1,E1)		
				16	

Q2 (i) (ii)	There may had the changes in the Any sensible	ave been change	es in products,	or		
	changes in th			01		
(ii)		c cconony.	-			
(ii)	-				B1	
(II)			1951	1		
	2159	3	2077	2		
	2361	6	2193	4		
	2570	7	2286	5		
	2985	10	2780	8		
	3012	11	2983	9		
	5442	13	4912	12		
	5756	15	5629	14		
	5825	16				
	6023	17				
	6078	18				
		116		55		
	H _o : Medians	for both groups	are the same			
		For the NW grou		r the NE		
	group	of the row grot	ip - meanin io	B1		
	Use of joint 1	ranking			M1	
	All ranks cor				A1	
	Use of rank s				M1	
	Smaller rank				Al	
	Use of W _{8,10}				M1	
	Critical point	t 56		A1		
	$55 \le 56$, so re				M1 A1	
	Median for N	W does seem t	o be greater,	A1		
	so the advert	ising did seem t	to have an imp	act	E1	
(iii)	Number the s	stores 01 to 30			B1	
	Choose a ran	dom starting po	sition in the ta	ble	B1	
		t numbers (betw	veen 01 – 30) a			
	correspondin	•			B1	
	Ignore repeat	ts.			B1	
	Alternative f	or (ii) using Ma	nn-Whitney m	ethod:		
			0	1951		
	215	9	0	2077		
	236		1	2193		
	257		1	2286		
	298		3	2780		
	301		3	2983		
	544		5	4912		
	575		6	5629		
	582					
	602					
	607	8				
	statistic		19			
	MV					
	CV(8,10					Mark scheme as above.
	5%	20				
				16		

Q3			
(i)	$\frac{\sum_{n} x}{n} = \frac{1252.9}{34}$ $\sqrt{\frac{1}{n-1} (\sum_{n} x^2 - \frac{(\sum_{n} x)^2}{n})}$ $= \sqrt{\frac{1}{33} (46172.85 - \frac{1252.9^2}{34})}$ $= \sqrt{0.105606} = 0.325 a wrt$	B1 M1 A1	S_{xx} or better
(ii)	Both samples are large or Central Limit Theorem.	B1	
(iii)	$\frac{\overline{x}_m - \overline{x}_f}{\sqrt{\frac{s_m^2}{n_m} + \frac{s_f^2}{n_f}}} = \frac{-0.05}{\sqrt{\frac{0.247^2}{36} + \frac{0.325^2}{34}}} = -0.7216$ $= -0.72 \text{ awrt}$ $H_0: \mu_m = \mu_f$ $H_1: \mu_m \neq \mu_f$ $\mu_m = \text{population mean temperature for males}$ $\mu_f = \text{population mean temperature for females}$ Critical value +/- 2.5758 ensuring that they compare like with like Since -0.7216 > -2.5758 there is no evidence to suggest rejecting H_0 We can accept that the two samples come from populations which have the same mean.	M1 M1 (m) M1 (f) M1 (all) A1CAO B1 B1 B1 B1 B1 B1 E1	numerator denominator Structure Condone absence of "population" if correct notation " μ " has been used, but do NOT accept $\overline{X} = \overline{Y}$ or similar unless \overline{X} and \overline{Y} are clearly and explicitly stated to be <u>population</u> means. Accept hypothesis explained in words, provided "population" appears. No FT if critical value wrong
		15	

Q4													
(i)	See graph on pa	G3	G1 f full	G1 for labelled axes G1 for "break" in vertical axis or full linear scale G1 for correct points									
(ii)	H ₀ : ρ =0 H ₁ : ρ <0 where ρ is the p Critical Region Since -0.5711 < Hence this data of negative corr and years servic	B1 B1 B1 M1 A E1	1 No I	No FT if critical value wrong									
(iii)	The outlier (27 data are not bive				st that th	nese	B1 B1						
(iv)		Α	В	С	D	Е	F	G	Н	Ι	J		
	Years Service,	12	3	27	5	2.5	4	8	9	10	14		
	% Hearing function, y	90	91	84	97	92	94	88	85	98	89		
	rank x	8	2	10	4	1	3	5	6	7	9		
	rank y	5	6	1	9	7	8	3	2	10	4		
	d^2 916812536An attempt at ranking Complete $\Sigma d^2 = 246$ $Z = 246$ $Z = 246$						25 M1 A1 B1	4	16	9	25	246	
	R=1-(6 x 246) awrt)/(10) x 99) =	1 – 1.4	909 = -	0.4909	A1						
(v)	H ₀ : there is no a and hearing fund		ation bet	ween y	ears of s	service							
	H_1 : there is negative.	B1											
	Critical value -0	.5636	5 < - 0.49	09			B1	No F	No FT if critical value wrong				
	There is insuffic	eient e	evidence	to rejec	et H ₀		M1	No r 1	No marks except initial B1 if $ r_s > 1$				
	So there would appear to be no association between hearing function and years of service												
(vi)	Discussion of di hypotheses, diff	E1, E		_	_		_						
(vii)	Age, sex, discos (quantifiable) su	E1, E	L										
(viii)	Simple random the sites are repu Stratified sampl	E1 E1											
							25						

Graph for question 4 (i)

Grade Thresholds

Advanced GCE Statistics MEI (H132) June 2009 Examination Series

Unit Threshold Marks

Unit		Maximum Mark	Α	В	С	D	E	U
G241	Raw	72	60	53	46	40	34	0
	UMS	100	80	70	60	50	40	0
G242	Raw	72	56	48	41	34	27	0
	UMS	100	80	70	60	50	40	0
G243	Raw	72	52	45	38	32	26	0
	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A	В	С	D	E	U
H132	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	В	С	D	E	U	Total Number of Candidates
H132	8.5	23.4	36.2	61.7	78.7	100	48

For a description of how UMS marks are calculated see: <u>http://www.ocr.org.uk/learners/ums_results.html</u>

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

