Statistics (MEI)

Mark Scheme for the Units

June 2009

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2009
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

Advanced Subsidiary GCE Statistics (H132)

MARK SCHEMES FOR THE UNITS

Unit/Content Page
G241 Statistics 1 1
G242 Statistics 2 5
G243 Statistics 3 8
Grade Thresholds 13

G241 Statistics 1

Q1 (i)	$\begin{aligned} & \text { Median }=2 \\ & \text { Mode }=1 \end{aligned}$	B1 CAO B1 CAO	2
(ii)		S1 labelled linear scales on both axes H1 heights	2
(iii)	Positive	B1	1
		TOTAL	5
Q2 (i)	$\binom{25}{5}$ different teams $=53130$	M1 for $\binom{25}{5}$ A1 CAO	2
(ii)	$\binom{14}{3} \times\binom{ 11}{2}=364 \times 55=20020$	M1 for either combination M1 for product of both A1 CAO	3
		TOTAL	5
Q3 (i)	$\begin{aligned} & \text { Mean }=\frac{126}{12}=10.5 \\ & \text { Sxx }=1582-\frac{126^{2}}{12}=259 \\ & s=\sqrt{\frac{259}{11}}=4.85 \end{aligned}$	B1 for mean M1 for attempt at $S x x$ A1 CAO	3
(ii)	New mean $=500+100 \times 10.5=1550$ New s $=100 \times 4.85=485$	B1 ANSWER GIVEN M1A1FT	3
(iii)	On average Marlene sells more cars than Dwayne. Marlene has less variation in monthly sales than Dwayne.	E1 E1FT	2
		TOTAL	8

Q7 (i)	$a=0.8, b=0.85, c=0.9$.	B1 for any one B1 for the other two	2
(ii)	$\begin{aligned} & P(\text { Not delayed })=0.8 \times 0.85 \times 0.9=0.612 \\ & P(\text { Delayed })=1-0.8 \times 0.85 \times 0.9=1-0.612=0.388 \end{aligned}$	M1 for product A1 CAO M1 for $1-\mathrm{P}$ (delayed) A1FT	4
(iii)	$\begin{aligned} & \text { P(just one problem) } \\ & =0.2 \times 0.85 \times 0.9+0.8 \times 0.15 \times 0.9+0.8 \times 0.85 \times 0.1 \\ & =0.153+0.108+0.068=0.329 \end{aligned}$	B1 one product correct M1 three products M1 sum of 3 products A1 CAO	4
(iv)	$\begin{aligned} & \mathrm{P}(\text { Just one problem } \mid \text { delay }) \\ & =\frac{\mathrm{P}(\mathrm{Just} \text { one problem and delay })}{\mathrm{P}(\text { Delay })}=\frac{0.329}{0.388}=0.848 \end{aligned}$	M1 for numerator M1 for denominator A1FT	3
(v)	P (Delayed \mid No technical problems) Either $=0.15+0.85 \times 0.1=0.235$ $O r=1-0.9 \times 0.85=1-0.765=0.235$ $O r=0.15 \times 0.1+0.15 \times 0.9+0.85 \times 0.1=0.235$ Or (using conditional probability formula) $\underline{\mathrm{P}(\text { Delayed and no technical problems) }}$ $\mathrm{P}($ No technical problems) $\begin{aligned} & =\frac{0.8 \times 0.15 \times 0.1+0.8 \times 0.15 \times 0.9+0.8 \times 0.85 \times 0.1}{0.8} \\ & =\frac{0.188}{0.8}=0.235 \end{aligned}$	M1 for $0.15+$ M1 for second term A1CAO M1 for product M1 for 1 - product A1CAO M1 for all 3 products M1 for sum of all 3 products A1CAO M1 for numerator M1 for denominator A1CAO	3
(vi)	Expected number $=110 \times 0.388=42.7$	M1 for product A1FT	2
		TOTAL	18

\begin{tabular}{|c|c|c|c|}
\hline Q8 (i) \& \begin{tabular}{l}
\[
\mathrm{X} \sim \mathrm{~B}(15,0.2)
\] \\
(A) \(\quad \mathrm{P}(\boldsymbol{X}=3)=\binom{15}{3} \times 0.2^{3} \times 0.8^{12}=0.2501\) \\
OR from tables \(\quad 0.6482-0.3980=0.2502\) \\
(B) \(\mathrm{P}(\boldsymbol{X} \geq 3)=1-0.3980=0.6020\) \\
(C) \(\mathrm{E}(X)=n p=15 \times 0.2=3.0\)
\end{tabular} \& \begin{tabular}{l}
M1 \(0.2^{3} \times 0.8^{12}\) \\
M1 \(\binom{15}{3} \times p^{3} q^{12}\) \\
A1 CAO \\
OR: M2 for \(0.6482-0.3980\) \\
A1 CAO \\
M1 \(\mathrm{P}(X \leq 2)\) \\
M1 \(1-\mathrm{P}(\mathrm{X} \leq 2)\) \\
A1 CAO \\
M1 for product \\
A1 CAO
\end{tabular} \& 3

3

2

\hline (ii) \& | (A) Let $p=$ probability of a randomly selected child eating at least 5 a day |
| :--- |
| $\mathrm{H}_{0}: p=0.2$ |
| $\mathrm{H}_{1}: p>0.2$ |
| (B) $\quad \mathrm{H}_{1}$ has this form as the proportion who eat at least 5 a day is expected to increase. | \& | B1 for definition of p in context |
| :--- |
| B1 for H_{0} |
| B1 for H_{1} |
| E1 | \& 4

\hline (iii) \& | $\begin{aligned} & \text { Let } X \sim \mathrm{~B}(15,0.2) \\ & \mathrm{P}(X \geq 5)=1-\mathrm{P}(X \leq 4)=1-0.8358=0.1642>10 \% \\ & \mathrm{P}(X \geq 6)=1-\mathrm{P}(X \leq 5)=1-0.9389=0.0611<10 \% \end{aligned}$ |
| :--- |
| So critical region is $\{6,7,8,9,10,11,12,13,14,15\}$ |
| 7 lies in the critical region, so we reject null hypothesis and we conclude that there is evidence to suggest that the proportion who eat at least five a day has increased. | \& | B1 for 0.1642 |
| :--- |
| B1 for 0.0611 |
| M1 for at least one comparison with 10% A1 CAO for critical region dep on M1 and at least one B1 |
| M1 dep for comparison A1 dep for decision and conclusion in context | \& 6

\hline \& \& TOTAL \& 18

\hline
\end{tabular}

G242 Statistics 2

Q2			
(i)(A)	$\begin{aligned} & \mathrm{P}(X<25)=\mathrm{P}\left(Z<\frac{25-25.2}{0.1}\right)=\mathrm{P}(Z<-2) \\ & 1-\Phi(2)=1-0.9772=0.0228 \end{aligned}$	M1 standardising M1 correct tail A1	3
(i)(B)	$\begin{aligned} & 1-\mathrm{p}^{5} \text { where } \mathrm{p}=0.9772 \\ & =0.1089 \end{aligned}$	$\begin{aligned} & \text { M1 M1 } \\ & \text { A1 } \end{aligned}$	3
(ii)(A)	$\frac{33544-\frac{1295^{2}}{50}}{49}=0.07143(\mathrm{AG})$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2
(ii)(B)	$\begin{aligned} & 25.9 \pm 1.96 \times \frac{\sqrt{0.07143}}{\sqrt{50}} \\ & (25.83,25.97) \end{aligned}$	M1 centred on 25.9 M1 structure (S.E.) B1 (1.96) A1 CAO	4
(ii)(C)	This interval does not contain 25 kg . This suggests that the mean amount of coal delivered could be greater than 25 kg .	E1 E1 (mean) E1 (greater) allow sensible alternatives	3

Q3			
(i)	$\begin{aligned} & \mathrm{H}_{0}: \text { population median }=23 \\ & \mathrm{H}_{1}: \text { population median }<23 \end{aligned}$ Actual differences $-9+10-11-12-17-7+4-5+6-15-14-3$ Associated ranks $\begin{array}{llllllllllll} 6 & 7 & 8 & 9 & 12 & 5 & 2 & 3 & 4 & 11 & 10 & 1 \end{array}$ $\begin{aligned} & T=6+8+9+12+5+3+11+10+1=65 \\ & T^{+}=7+2+4=13 \\ & \therefore T=13 \end{aligned}$ From tables - at the 5% level of significance in a onetailed Wilcoxon signed rank test, the critical value of T is 17 $13<17 \therefore$ the result is significant The evidence suggests a decrease in the median waiting time with the new appointments system	B1 B1 B1 M1 A1 B1 B1 B1 B1 M1 A1 E1	12
(ii)	Sample small and population variance unknown. t test	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	2

Q4			
(i) \boldsymbol{A}	Sample mean $=312 \div 120 \quad(=2.6$ AG $)$	M1 A1	2
(i)B	Variance $=1.880^{2}=3.5344$ Comparison of sample mean and variance with conclusion about suitability of Poisson model.	B1 E1 dep	2
(i)C	The observed frequencies would tail-off more in a Poisson model (or the observed frequency for $x=5$ is too high $)-$ hence a Poisson model may not be suitable.	E1	E1

Q5			
(i)	Estimate of population mean $=273$ Estimate of population variance $=18.222$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	2
(ii)	$\mathrm{H}_{0}: \mu=268$ \& $\mathrm{H}_{1}: \mu>268$ Where μ represents the population mean ball striking distance using clubs made from the new alloy. $t=\frac{273-268}{S D / \sqrt{10}}=3.704(4 \text { s.f. })$ 9 degrees of freedom At 5% level, critical value of t is 1.833 $3.704>1.833$ so the result is significant. Evidence suggests the clubs made with the new alloy have a mean striking distance greater than 268 yards.	B1 (both) B1 M1 A1 B1 B1 M1A1 A1	9
(iii)	Any suitable comments - e.g. wind speed/length of grass/type of ball will affect the distance travelled.	$\begin{aligned} & \hline \text { E1 } \\ & \text { E1 } \end{aligned}$	2

G243 Statistics 3

Q1					
(i)				B1 B1 B1	Condone absence of "population" if correct notation " μ " has been used, but do NOT accept $\bar{X}=0($ or $\bar{X}=\bar{Y})$ or similar unless \bar{X} and \bar{Y} are clearly and explicitly stated to be population means. Accept hypothesis explained in words, provided "population" appears.
	non	dom	diff		
	485356	336	149		
		381	-25		
	450402	348	102		
		329	73		
	376409	329	47		
		346	63		
	419289420	344	75	M1	
		327	-38		
		342	78		
	410	356	54		
		total mean	$\begin{gathered} 578 \\ 57.8 \end{gathered}$	awrt A1 awrt A1	
		sample SD	55.17		
	Test statistic is $t=\frac{\bar{d}-0}{s / \sqrt{n}}=\frac{57.8}{55.17 / \sqrt{10}}=3.31$			M1 A1awrt	Follow-through incorrect value of test statistic
	Critical region $t_{9}>1.833$			M1	fr t_{9} (No follow-through from here
				A1	for 1.833 (No follow-through from here if wrong)
	Since $3.31>1.833 \mathrm{H}_{0}$ is rejected, there is sufficient evidence to suggest that reaction times for the dominant hand are faster, on average, than for the non-dominant hand.			A1	
				A1	
	Assume Normality; of (population of) differences			B1	
				B1	
(ii)	e.g. possible "consistent order" or learning effect which cannot be disentangled in the analysis and should therefore be randomised.			$\begin{aligned} & \mathrm{E} 2 \\ & (\mathrm{E} 1, \mathrm{E} 1) \end{aligned}$	
				16	

Q3			
(i)	$\begin{aligned} & \frac{\sum x}{n}=\frac{1252.9}{34} \\ & \sqrt{\frac{1}{n-1}\left(\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}\right)} \\ & =\sqrt{\frac{1}{33}\left(46172.85-\frac{1252.9^{2}}{34}\right)} \\ & =\sqrt{0.105606}=0.325 \mathrm{awrt} \end{aligned}$	B1 M1 A1	$S_{x x}$ or better
(ii)	Both samples are large or Central Limit Theorem.	B1	
(iii)	$\begin{aligned} & \frac{\bar{x}_{m}-\bar{x}_{f}}{\sqrt{\frac{s_{m}^{2}}{n_{m}}+\frac{s_{f}^{2}}{n_{f}}}}=\frac{-0.05}{\sqrt{\frac{0.247^{2}}{36}+\frac{0.325^{2}}{34}}}=-0.7216 \\ & =-0.72 \text { awrt } \\ & \mathrm{H}_{0}: \mu_{m}=\mu_{f} \\ & \mathrm{H}_{1}: \mu_{m} \neq \mu_{f} \\ & \mu_{m}=\text { population mean temperature for males } \\ & \mu_{f}=\text { population mean temperature for females } \\ & \text { Critical value }+/-2.5758 \text { ensuring that they } \\ & \text { compare like with like } \end{aligned}$ Since $-0.7216>-2.5758$ there is no evidence to suggest rejecting H_{0} We can accept that the two samples come from populations which have the same mean.	M1 M1 (m) M1 (f) M1 (all) A1CAO B1 B1 B1 B1 M1 E1	numerator denominator Structure Condone absence of "population" if correct notation " μ " has been used, but do NOT accept $\bar{X}=\bar{Y}$ or similar unless \bar{X} and \bar{Y} are clearly and explicitly stated to be population means. Accept hypothesis explained in words, provided "population" appears. No FT if critical value wrong
		15	

Q4												
(i)	See graph on page 9						G3	G1 for labelled axes G1 for "break" in vertical axis or full linear scale G1 for correct points				
(ii)	$\mathrm{H}_{0}: \rho=0$ $\mathrm{H}_{1}: \rho<0$ where ρ is the population coefficient Critical Region <-0.5494 (one tail) Since $-0.5711<-0.5494$ reject H_{0} Hence this data would show that there is evidence of negative correlation between hearing function and years service.						B1 B1 B1 M1 A1 E1	No FT if critical value wrong				
(iii)	The outlier (27 years) tends to suggest that these data are not bivariate Normal.						$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$					
(iv)		A	B	C	D	E	F	G	H	I	J	
	Years Service,	12	3	27	5	2.5	4	8	9	10	14	
	\% Hearing function, y	90	91	84	97	92	94	88	85	98	89	
	rank x	8	2	10	4	1	3	5	6	7	9	
	rank y	5	6	1	9	7	8	3	2	10	4	
	d^{2}	9	16	81	25	36	25	4	16	9	25	246
	An attempt at ranking Complete $\Sigma \mathrm{d}^{2}=246$ $\begin{aligned} & \mathrm{R}=1-(6 \times 246) /(10 \times 99)=1-1.4909=-0.4909 \\ & \text { awrt } \end{aligned}$						M1 A1 B1 A1					
(v)	H_{0} : there is no association between years of service and hearing function H_{1} : there is negative association Critical value $-0.5636<-0.4909$ There is insufficient evidence to reject H_{0} So there would appear to be no association between hearing function and years of service						B1 B1 M1 E1	No FT if critical value wrong No marks except initial B1 if $\left\|r_{s}\right\|>$ 1				
(vi)	Discussion of different outcomes, different hypotheses, different assumptions						E1, E1					
(vii)	Age, sex, discos, shooting, disease or other sensible (quantifiable) suggestion						E1, E1					
(viii)	Simple random sampling does not guarantee that all the sites are represented Stratified sampling						$\begin{array}{\|l\|l} \hline \text { E1 } \\ \text { E1 } \end{array}$					
							25					

Graph for question 4 (i)

Grade Thresholds

Advanced GCE Statistics MEI (H132)
June 2009 Examination Series
Unit Threshold Marks

Unit		Maximum Mark	A	B	C	D	E	U
G241	Raw	72	60	53	46	40	34	0
	UMS	100	80	70	60	50	40	0
G242	Raw	72	56	48	41	34	27	0
	UMS	100	80	70	60	50	40	0
G243	Raw	72	52	45	38	32	26	0
	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
H132	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
H132	8.5	23.4	36.2	61.7	78.7	100	48

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

