Statistics (MEI)

Mark Scheme for the Units

June 2008

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2008
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

Advanced Subsidiary GCE Statistics (H132)

MARK SCHEMES FOR THE UNITS

Unit/Content Page
G241 Statistics 1 1
G242 Statistics 2 9
G243 Statistics 3 13
Grade Thresholds 17

G241 Statistics 1

1	(i)	Mean $=7.35$ (or better) Standard deviation: 3.69-3.70 (awfw) Allow s ${ }^{2}=13.62$ to 13.68 Allow rmsd $=3.64-3.66$ (awfw) After B0, B0 scored then if at least 4 correct mid-points seen or used. $\{1.5,4,6,8.5,15\}$ Attempt of their mean $=\frac{\sum f x}{44}$, with $301 \leq \mathrm{fx} \leq 346$ and fx strictly from mid-points not class widths or top/lower boundaries.	B2cao $\sum f x=323.5$ B2cao $\sum f x^{2}=$ 2964.25 (B1) for variance s.o.i.o (B1) for rmsd (B1) mid-points (B1) $6.84 \leq$ mean ≤ 7.86	
	(ii)	Upper limit $=7.35+2 \times 3.69=14.73$ or 'their sensible mean' $+2 \times$ 'their sensible s.d.' So there could be one or more outliers	M1 (with s.d. $<$ mean) E1dep on B2, B2 earned and comment	2
			TOTAL	6
2	(i)	$\mathrm{P}(W) \times \mathrm{P}(C)=0.20 \times 0.17=0.034$ $\mathrm{P}(W \cap C)=0.06$ (given in the question) Not equal so not independent (Allow $0.20 \times 0.17 \neq 0.06$ or $\neq \mathrm{p}(\mathrm{W} \cap \mathrm{C})$ so not independent).	M1 for multiplying or 0.034 seen A1 (numerical justification needed)	2
	(ii)	The last two G marks are independent of the labels	G1 for two overlapping circles labelled G1 for 0.06 and either 0.14 or 0.11 in the correct places G1 for all 4 correct probs in the correct places (including the 0.69) NB No credit for Karnaugh maps here	3
	(iii)	$\mathrm{P}(W \mid C)=\frac{\mathrm{P}(W \cap C)}{\mathrm{P}(\mathrm{C})}=\frac{0.06}{0.17}=\frac{6}{17}=0.353($ awrt 0.35$)$	M1 for $0.06 / 0.17$ A1 cao	2

| (iv) | Children are more likely than adults to be able to speak
 Welsh or 'proportionally more children speak Welsh
 than adults'
 Do not accept: 'more Welsh children speak Welsh than
 adults' | E1FT Once the
 correct idea is seen,
 apply ISW | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- | :--- |
| | | TOTAL | $\mathbf{8}$ |

3	(i)	(A) $0.5+0.35+\boldsymbol{p}+\boldsymbol{q}=1$ so $\boldsymbol{p}+\boldsymbol{q}=0.15$ (B) $0 \times 0.5+1 \times 0.35+2 \boldsymbol{p}+3 \boldsymbol{q}=0.67$ so $2 \boldsymbol{p}+3 \boldsymbol{q}=0.32$ (C) from above $2 \boldsymbol{p}+2 \boldsymbol{q}=0.30$ $\text { so } \boldsymbol{q}=0.02, \boldsymbol{p}=0.13$	B1 $\mathrm{p}+\mathrm{q}$ in a correct equation before they reach $\mathrm{p}+\mathrm{q}=0.15$ B1 $2 p+3 q$ in a correct equation before they reach $2 \mathrm{p}+$ $3 q=0.32$ (B1) for any 1 correct answer B2 for both correct answers	1 2
	(ii)	$\mathrm{E}\left(X^{2}\right)=0 \times 0.5+1 \times 0.35+4 \times 0.13+9 \times 0.02=1.05$ $\operatorname{Var}(X)=$ 'their 1.05 ' $-0.67^{2}=0.6011$ (awrt 0.6) (M1, M1 can be earned with their p^{+}and q^{+}but not A mark)	M1 $\Sigma x^{2} p$ (at least 2 non zero terms correct) M1dep for (-0.67^{2}), provided $\operatorname{Var}(X)>0$ A1 cao (No n or n-1 divisors)	3
			TOTAL	7
4	(i)	$X \sim \mathrm{~B}(8,0.05)$ (A) $\mathrm{P}(\boldsymbol{X}=0)=0.95^{8}=0.6634 \quad 0.663$ or better Or using tables $\mathrm{P}(\boldsymbol{X}=0)=0.6634$ (B) $\mathrm{P}(\boldsymbol{X}=1)=\binom{8}{1} \times 0.05 \times 0.95^{7}=0.2793$ $\mathrm{P}(\boldsymbol{X}>1)=1-(0.6634+0.2793)=0.0573$ Or using tables $\mathrm{P}(X>1)=1-0.9428=0.0572$	M1 $0.95^{8} \mathrm{~A} 1 \mathrm{CAO}$ Or B2 (tables) M1 for $\mathrm{P}(X=1)$ (allow 0.28 or better) M1 for $1-\mathrm{P}(X \leq 1)$ must have both probabilities A1cao (0.0572 0.0573) M1 for $\mathrm{P}(X \leq 1)$ 0.9428 M1 for $1-\mathrm{P}(X \leq 1)$ A1 cao (must end in...2)	2 3
	(ii)	Expected number of days $=250 \times 0.0572=14.3$ awrt	M1 for $250 \mathrm{x} \operatorname{prob}(\mathrm{B})$ A1 FT but no rounding at end	2
			TOTAL	7
5	(i)	Let $p=$ probability of remembering or naming all items (for population) (whilst listening to music.) $\begin{aligned} & \mathrm{H}_{0}: p=0.35 \\ & \mathrm{H}_{1}: p>0.35 \end{aligned}$ H_{1} has this form since the student believes that the	B1 for definition of p B1 for H_{0} B1 for H_{1} E1dep on $\mathrm{p}>0.35$ in	

		Section B	
6	(i)	$\begin{aligned} & \text { (A) } \mathrm{P}(\text { both rest of } \mathrm{UK})=0.20 \times 0.20 \\ & =0.04 \end{aligned}$ (B) Either: All 5 case P $($ at least one England $)=$ $\begin{aligned} & (0.79 \times 0.20)+(0.79 \times 0.01)+(0.20 \times 0.79)+(0.01 \times \\ & 0.79)+(0.79 \times 0.79) \\ & =0.158+0.0079+0.158+0.0079+0.6241=0.9559 \end{aligned}$ Or $\text { P(at least one England })=1-\mathrm{P}(\text { neither England })$ $=1-(0.21 \times 0.21)=1-0.0441=0.9559$ or listing all $=1-\{(0.2 \times 0.2)+(0.2 \times 0.01)+(0.01 \times 0.20)+(0.01 \mathrm{x}$ $0.01)\}$ $=1-(* *)$ $=1-\{0.04+0.002+0.002+0.0001)$ $=1-0.0441$ $=0.9559$ Or: All 3 case $\mathrm{P}($ at least one England $)=$ $\begin{aligned} & =0.79 \times 0.21+0.21 \times 0.79+0.79^{2} \\ & =0.1659+0.1659+0.6241 \\ & =0.9559 \\ & ---1 \end{aligned}$ Or $0.99 \times 0.99=0.9801$ Or $1-\{0.79 \times 0.01+0.2 \times 0.01+0.01 \times 0.79+0.01 \times 0.02$ $\left.+0.01^{2}\right\}=1-0.0199$ $=0.9801$	M1 for multiplying A1cao M1 for any correct term (3case or 5case) M1 for correct sum of all 3 (or of all 5) with no extras A1 cao (condone 0.96 www) Or M1 for $0.21 \times$ 0.21 or for $\left({ }^{* *}\right)$ fully enumerated or 0.0441 seen M1dep for $1-\left(1^{\text {st }}\right.$ part) A1cao See above for 3 case M1 for sight of all 4 correct terms summed A1 cao (condone 0.98 www) or M1 for 0.99×0.99 A1 cao Or M1 for everything $1-\{\ldots . .\}$ Alcao

\begin{tabular}{|c|c|c|c|c|}
\hline 7 \& (i) \& Positive \& B1 \& 1 \\
\hline \& (ii) \& \[
\begin{aligned}
\& \text { Number of people }=20 \times 33(000)+5 \times 58(000) \\
\& =660(000)+290(000)=950000
\end{aligned}
\] \& M1 first term M1 (indep) second term A1 cao NB answer of 950 scores M2A0 \& 3 \\
\hline \& (iii) \& \begin{tabular}{l}
(A) \(a=1810+340=2150\) \\
(B) Median \(=\) age of \(1385\left(000^{\text {th }}\right)\) person or \(1385.5(000)\) \\
Age 30, cf = \(1240(000)\); age 40, cf = \(1810(000)\) \\
Estimate median \(=(30)+\frac{\mathbf{1 4 5}}{\mathbf{5 7 0}} \times \mathbf{1 0}\) \\
Median \(=32.5\) years (\(32.54 \ldots\)...) If no working shown then 32.54 or better is needed to gain the M1A1. If 32.5 seen with no previous working allow SC1
\end{tabular} \& \begin{tabular}{l}
M1 for sum \\
A1 cao 2150 or 2150 thousand but not 215000 B1 for 1385 (000) or 1385.5 \\
M1 for attempt to interpolate
\[
\frac{145 k}{570 k} \times 10
\] \\
(2.54 or better suggests this) \\
A1 cao min 1dp
\end{tabular} \& 2

3

\hline \& (iv) \& | Frequency densities: 56, 65, 77, 59, 45, 17 |
| :--- |
| (accept 45.33 and 17.43 for 45 and 17) | \& | B1 for any one correct |
| :--- |
| B1 for all correct (soi by listing or from histogram) |
| Note: all G marks below dep on attempt at frequency density, NOT frequency |
| G1 Linear scales on both axes (no inequalities) |
| G1 Heights FT their listed fds or all must be correct. Also widths. All blocks joined |
| G1 Appropriate label for vertical | \& 5

\hline
\end{tabular}

			scale eg 'Frequency density (thousands)', 'frequency (thousands) per 10 years', 'thousands of people per 10 years'. (allow key). OR f.d.	
	(v)	Any two suitable comments such as: Outer London has a greater proportion (or \%) of people under 20 (or almost equal proportion) The modal group in Inner London is 20-30 but in Outer London it is 30-40 Outer London has a greater proportion (14\%) of aged 65+ All populations in each age group are higher in Outer London Outer London has a more evenly spread distribution or balanced distribution (ages) o.e.	E1 E1	
	(vi)	```Mean increase \(\uparrow\) median unchanged (-) midrange increase \(\uparrow\) standard deviation increase \(\uparrow\) interquartile range unchanged. (-)```	Any one correct B1 Any two correct B2 Any three correct B3 All five correct B4	4
			TOTAL	20

G242 Statistics 2

1		(i)	Scots pine seedlings occur randomly and independently with uniform mean rate.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \hline \end{aligned}$	2
1	A B	(ii)	$\begin{aligned} & \mathrm{e}^{-8} \times 8^{7} \div 7!\quad(0.4530-03134 \text { from tables }) \\ & 0.1396 \\ & 1-\mathrm{P}(X \leq 7) \\ & 1-0.4530 \\ & 0.547 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	2 2
1		(iii)	$\begin{array}{ll} (1-(i i) B)^{5} & {\left[=0.453^{5}\right]} \\ 1-0.453^{5} & \\ 0.9809 & \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3
1		(iv)	$\begin{aligned} & \mathrm{P}(\text { height }>70)=\mathrm{P}\left(\mathrm{Z}>\frac{70-56}{20}\right)=\mathrm{P}(\mathrm{Z}>0.7) \\ & =1-\Phi(0.7)=1-0.7580(=0.242(\text { answer given })) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2
1		(v)	$\begin{array}{\|l\|} \hline \mathrm{z}=1.645 \\ -1.645 \times 20+56 \\ 23.1 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { B1 }(\pm) \\ & \text { M1 (-ive z) } \\ & \text { A1 } \\ & \hline \end{aligned}$	3
2		(i)	$\begin{aligned} & \text { Mean }=185 \\ & \text { Variance }=210.727 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \\ & \hline \end{aligned}$	2
2		(ii)	$\mathrm{H}_{0}: \mu=175 \quad \& \quad \mathrm{H}_{1}: \mu>175$ Where μ represents the mean decrease for the underlying population. $t=\frac{185-175}{S D / \sqrt{12}}=2.39 \text { (3s.f.) }$ 11 degrees of freedom At 5% level, critical value of t is 1.796 $2.39>1.796$ so the result is significant. Evidence suggests the mean decrease in cholesterol level is more than 175 .	B1 B1 M1 A1 FT B1 B1 M1A1 A1	9
2		(iii)	The decrease in cholesterol level in the underlying population follows a Normal distribution. The sample is assumed to be random.	E1(Normal) E1(Random)	2

3	(i)	H_{0} : there is no association between gum disease and coronary artery disease H_{1} : there is an association between gum disease and coronary artery disease Expected frequencies Contributions to X^{2} (without Yates' correction) Contributions to X^{2} (with Yates' correction) $X^{2}=5.4102 \quad$ (or 4.8008 with Yates'correction) 1 degree of freedom Critical value at 5% level is 3.841 As 5.4102 (or 4.8008) > 3.841 the result is significant There is evidence of an association between gum disease and coronary artery disease	B1 M1 A1 M1 M1 (summation) A1 CAO B1 B1 M1 A1(in context)	10
3	(ii)	2 degrees of freedom Critical value at 5% level is 5.991 $8.2808>5.991$ the result is significant There is evidence of an association between age and coronary artery disease	B1 B1 M1 A1(in context)	4
3	(iii)	Suitable comments (in context)	$\begin{aligned} & \text { E1 } \\ & \text { F1 } \end{aligned}$	

4	(i)	$\begin{aligned} & \mathrm{H}_{0} \text { : population median }=26 \\ & \mathrm{H}_{1} \text { : population median }<26 \end{aligned}$ Actual differences Associated ranks $\begin{array}{llllllllllll} 3 & 12 & 8 & 9 & 4 & 6 & 1 & 10 & 7 & 2 & 11 & 5 \end{array}$ $\begin{aligned} & T=3+8+9+4+10+7+2+11+5=59 \\ & T^{+}=12+6+1=19 \\ & \therefore T=19 \end{aligned}$ From tables - at the 5% level of significance in a one-tailed Wilcoxon signed rank test, the critical value of T is 17 $19>17 \therefore$ the result is not significant The evidence does not suggest a decrease in the numbers of ants this year.	B1 B1 M1 A1 B1 B1 B1 B1 M1 A1 E1	12
4	(ii)	Variable - symmetry Sample - random	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \\ & \hline \end{aligned}$	2

5	(i)	If hamsters choose their bedding randomly then the three options will be equally likely to occur. Hence the probability that a hamster chooses the new material will be $1 / 3$.	E1	1
5	(ii)	$\begin{aligned} & 0.0390,0.1561,0.2731,0.2732,0.1707,0.0682,0.0197 \\ & 5.85,23.415,40.965,40.98,25.605,10.23,2.955 \end{aligned}$	$\begin{aligned} & \text { M1 A2 } \\ & \text { M1 A1 } \end{aligned}$	5
5	(iii)	$\mathrm{H}_{0}: \mathrm{B}(8,1 / 3)$ is a good model $H_{1}: B(8,1 / 3)$ is not a good model Merge final two cells. $\begin{aligned} & X^{2}=\frac{(10-5.85)^{2}}{5.85}+\frac{(31-23.415)^{2}}{23.415}+\frac{(42-40.965)^{2}}{40.965}+ \\ & \frac{(34-40.98)^{2}}{40.98}+\frac{(19-25.605)^{2}}{25.605}+\frac{(14-13.185)^{2}}{13.185} \\ & =8.370 \end{aligned}$ 5 degrees of freedom (6-1) Critical value at 5% level is 11.07 (FT their dof) $8.370<11.07$ the result is not significant. No evidence to suggest the binomial distribution is not a good model.	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { M1 }\left[(o-e)^{2} / e\right] \\ & \text { M1 }[\mathrm{sum}] \\ & \\ & \text { A1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	9

G243 Statistics 3

1		(i)	Quota sampling. Advantage - probably the only realistic way to get a reasonably 'representative' sample in these circumstances. Disadvantage - non-random, so statistical analysis is complicated.		Or other sensible comments. Eg cost or time effective as an advantage	3
	(a)	(ii)		G1 G1 G1	Axes, including labels. Correct zero. All points correct (allow 2 errors).	3
	(b)		Critical point for $n=20$ at two-sided 5% level is 0.4466 Significant. Seems there is an association between distance travelled and money spent.	$\left.\begin{array}{l}\text { B2 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { E1 } \\ \text { E1 }\end{array}\right\}$	Allow B1 if one or two errors. CAO. No FT if wrong. No access to these marks if value of r_{s} is nonsense.	7
	(c)		Some sensible explanation of "no". Scatter diagram does not suggest bivariate Normality.	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	SC1. Allow 1 out of 2 if "bivariate" missing. SC2. Allow 1 out of 2 for sensible comment re "outliners". No marks for "data not linear".	2
2						
		(i)	$\begin{aligned} & \mathrm{H}_{0}: \mu_{A}=\mu_{B} \\ & \mathrm{H}_{1}: \mu_{A} \neq \mu_{B} \end{aligned}$ Where μ_{A}, μ_{B} are the population mean lengths for the machines.	B1 B1 B1	Do not allow \bar{A}, \bar{B} or similar unless they are clearly and explicitly stated to be population means. Hypotheses in words must include "population".	

		$\left.\begin{array}{l} \bar{x}_{1}=\frac{184.5}{90}=2.05 \\ \bar{x}_{2}=\frac{156.0}{75}=2.08 \end{array}\right\}$ Because the samples are large, the values of s_{1}^{2} and s_{2}^{2} are taken as σ_{1}^{2} and σ_{2}^{2}. Two-sample test based on $\mathrm{N}(0,1)$. Test statistic is: $\frac{2.05-2.08(-0)}{\sqrt{\frac{0.2103}{90}+\frac{0.1312}{75}}}=-\frac{0.03}{\sqrt{0.004086}}=-\frac{0.03}{0.0639}=-0.46(93)$ Double-tailed 10% point of $\mathrm{N}(0,1)$ is 1.645 . Not significant. No reason to suppose mean lengths differ.	B1 M1 A1 M1 M1 M1 A1 A1 E1 E1	For adequate verbal definition. Allow absence of "population" here if correct notation μ has been used. M0 A0 for divisor n, but FT. Accept as implicit if s_{1}^{2} and s_{2}^{2} are correctly used in sequel. Accept usual alternatives. No FT if wrong.	13
	(ii)	Samples are large, so by the Central Limit Theorem the underlying distribution of the sample means will be approximately Normal.	E2	$(2,1,0)$	2
	(i)	Differences are: Test statistic is $4+10+8+1=23$ (or $7+9+3+6+2+5=32$) Refer to paired Wilcoxon table with $n=10$. Need lower $21 / 2 \%$ point which is 8 (or, if 32 used, upper $2 \frac{1}{2} \%$ point which is 47). Not significant. Seems underlying median total journey times may be assumed equal.	B1 M1 A1 M1 A1 M1 A1 E1 E1	FT if M1 earned or if d (not $\|d\|)$ ranked. FT if M1 earned. No FT if wrong. No FT if wrong.	9
	(ii)	The "pairing" will eliminate any differences between the weeks - so can compare the two airlines.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$		2

		(iii)	Two sensible comments such as: - check-in and waiting times not in airlines' control - time for collecting luggage not in airlines' control - other journey criteria might be of importance (e.g. departure time, on-board service, fares).	$\begin{aligned} & \text { E2 } \\ & \text { E2 } \end{aligned}$	Reward any two sensible comments for (E 2 each) (2,1,0). For 2 marks there must be some comment to the effect of comparison, not merely that a factor might affect both airlines.	4
4						
		(i)	Randomisation: to guard against possible unsuspected sources of bias caused by fertility patterns among the plots.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	Or equivalent comments.	2
		(ii)	Replication: so that natural variation can be measured, so that any observed inter-variety variation can be compared with it.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	Or equivalent comments.	2
		(iii)	Normality of both populations, equal population variances. $\begin{aligned} & \mathrm{H}_{0}: \mu_{A}=\mu_{B} \\ & \mathrm{H}_{1}: \mu_{A} \neq \mu_{B} \end{aligned}$ where μ_{A}, μ_{B} are the population means for varieties A and B . $\begin{aligned} & \mathrm{A}: \bar{x}=23.50, s_{n-1}=0.9529 \\ & \mathrm{~B}: \bar{y}=21.94, s_{n-1}=0.8649 \end{aligned}$ Pooled $s^{2}=\frac{(5 \times 0.908)+(4 \times 0.748)}{9}=\frac{7.532}{9}=0.836 \dot{8}$ Test statistic is $\frac{23.50-21.94(-0)}{\sqrt{0.836 \dot{8}} \sqrt{\frac{1}{6}+\frac{1}{5}}}$ $=\frac{1.56}{0.5539(5)}=2.816$ Refer to t_{9} Double-tailed 5\% point is 2.262 .	B1 B1 B1 B1 B1 M1 A1 M1 M1 M1 A1	Do not allow \bar{A}, \bar{B} or similar unless they are clearly and explicitly stated to be population means. Hypotheses in words must include "population". Do not allow s_{n} : $0.8699,0.7736$ For any reasonable attempt at pooling. If correct. For numerator. For $\sqrt{0.8368}$ (or cand's value). For $\sqrt{\frac{1}{6}+\frac{1}{5}}$. FT from here if all M marks earned.	

\(\left.$$
\begin{array}{|l|l|l|l|l|l|l|}\hline & & & \begin{array}{l}\text { Significant. } \\
\text { Appears that population mean yields are different. }\end{array} & \begin{array}{l}\text { M1 } \\
\text { A1 } \\
\text { E1 } \\
\text { E1 }\end{array} & \begin{array}{l}\text { No FT if wrong. } \\
\text { [accept usual } \\
\text { No FT if wrong. } \\
\text { [alternatives.] }\end{array} & 15 \\
\hline & & \text { (iv) } & \begin{array}{l}\text { The pairing will eliminate differences around the field. } \\
-\quad \text { can compare the plots within the pairs. }\end{array}
$$ \& E1

E1\end{array}\right]\)| M1 |
| :--- |

Grade Thresholds

Advanced Subsidiary GCE Statistics MEI (H132)
June 2008 Examination Series
Unit Threshold Marks

Unit	Maximum Mark	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{u}	
G241	Raw	72	53	45	38	31	24	0
	UMS	100	80	70	60	50	40	0
G242	Raw	72	56	49	42	35	28	0
	UMS	100	80	70	60	50	40	0
$\mathbf{G 2 4 3}$	Raw	72	56	48	40	33	26	0
	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
H132	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
H132	9.7	12.9	35.5	51.6	64.5	100	31

For a description of how UMS marks are calculated see: http://www.ocr.org.uk/learners/ums results.html

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

