

Statistics (MEI)

Advanced Subsidiary GCE AS H132

Mark Scheme for the Units

June 2008

H132/MS/R/08J

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2008

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

CONTENTS

Advanced Subsidiary GCE Statistics (H132)

MARK SCHEMES FOR THE UNITS

Unit/Content	Page
G241 Statistics 1	1
G242 Statistics 2	9
G243 Statistics 3	13
Grade Thresholds	17

G241 Statistics 1

1	(i)	Mean = 7.35 (or better)	B2cao $\sum fx = 323.5$	
		Standard deviation: 3.69 – 3.70 (awfw)	B2cao $\sum fx^2 =$	
		Allow $s^2 = 13.62$ to 13.68	2964.25	
		Allow rmsd = $3.64 - 3.66$ (awfw)	(B1) for variance s.o.i.o	
		After B0, B0 scored then if at least 4 correct mid-points seen or used. {1.5, 4, 6, 8.5, 15}	(B1) for rmsd	
		Attempt of their mean $=\frac{\sum fx}{44}$, with $301 \le fx \le 346$ and	(B1) mid-points	4
		fx strictly from mid-points not class widths or top/lower boundaries.	(B1) 6.84≤mean≤7.86	
	(ii)	Upper limit = $7.35 + 2 \times 3.69 = 14.73$ or 'their sensible mean' + 2 × 'their sensible s.d.'	M1 (with s.d. < mean)	
		So there could be one or more outliers	E1 dep on B2, B2 earned and comment	2
			TOTAL	6
2	(i)	$P(W) \times P(C) = 0.20 \times 0.17 = 0.034$ $P(W \cap C) = 0.06$ (given in the question)	M1 for multiplying or 0.034 seen	
		Not equal so not independent (Allow $0.20 \times 0.17 \neq 0.06$	A1 (numerical justification needed)	2
		or \neq p (W \cap C) so not independent).	justification fielded)	2
	(ii)		G1 for two overlapping circles labelled	
			G1 for 0.06 and either 0.14 or 0.11 in the correct places	
		0.69 The last two G marks are independent of the labels	G1 for all 4 correct probs in the correct places (including the	3
			0.69) NB No credit for Karnaugh maps here	
	(iii)	$P(W C) = \frac{P(W \cap C)}{P(C)} = \frac{0.06}{0.17} = \frac{6}{17} = 0.353 \text{ (awrt 0.35)}$	M1 for 0.06 / 0.17	2
			A1 cao	

	(iv)	Children are more likely than adults to be able to speak Welsh or 'proportionally more children speak Welsh than adults' Do not accept: 'more Welsh children speak Welsh than adults'	E1FT Once the correct idea is seen, apply ISW	1
			TOTAL	8

Mark Scheme

3	(i)	(A) $0.5 + 0.35 + p + q = 1$ so $p + q = 0.15$ (B) $0 \times 0.5 + 1 \times 0.35 + 2p + 3q = 0.67$ so $2p + 3q = 0.32$ (C) from above $2p + 2q = 0.30$ so $q = 0.02, p = 0.13$	B1 p + q in a correct equation before they reach p + q =0.15 B1 2p + 3q in a correct equation before they reach 2p + 3q = 0.32	1
			(B1) for any 1 correct answer B2 for both correct answers	2
	(ii)	$E(X^{2}) = 0 \times 0.5 + 1 \times 0.35 + 4 \times 0.13 + 9 \times 0.02 = 1.05$ Var(X) = 'their 1.05' - 0.67 ² = 0.6011 (awrt 0.6) (M1, M1 can be earned with their p ⁺ and q ⁺ but not A mark)	M1 $\Sigma x^2 p$ (at least 2 non zero terms correct) M1dep for (- 0.67 ²), provided Var(X) > 0 A1 cao (No n or n-1 divisors)	3
			TOTAL	7
4	(i)	$X \sim B(8, 0.05)$ (A) $P(X = 0) = 0.95^8 = 0.6634$ 0.663 or better	M1 0.95^8 A1 CAO Or B2 (tables)	2
		<i>Or</i> using tables $P(X = 0) = 0.6634$ (<i>B</i>) $P(X = 1) = {\binom{8}{1}} \times 0.05 \times 0.95^7 = 0.2793$ P(X > 1) = 1 - (0.6634 + 0.2793) = 0.0573	M1 for $P(X = 1)$ (allow 0.28 or better) M1 for $1 - P(X \le 1)$ must have both probabilities A1cao (0.0572 - 0.0573)	3
		<i>Or</i> using tables $P(X > 1) = 1 - 0.9428 = 0.0572$	M1 for $P(X \le 1)$ 0.9428 M1 for $1 - P(X \le 1)$ A1 cao (must end in2)	
	(ii)	Expected number of days = $250 \times 0.0572 = 14.3$ awrt	M1 for 250 x prob(B) A1 FT but no rounding at end	2
_			TOTAL	7
5	(i)	Let p = probability of remembering or naming all items (for population) (whilst listening to music.) H ₀ : $p = 0.35$ H ₁ : $p > 0.35$ H ₁ has this form since the student believes that the	B1 for definition of p B1 for H ₀ B1 for H ₁ E1dep on p>0.35 in	

G241

		probability will be increased/ improved/ got better /gone up.	H_0 In words not just because p > 0.35	4
	(ii)	Let $X \sim B(15, 0.35)$ <i>Either</i> : $P(X \ge 8) = 1 - 0.8868 = 0.1132 > 5\%$ Or $0.8868 < 95\%$ So not enough evidence to reject H_0 (Accept H_0) Conclude that there is not enough evidence to indicate that the probability of remembering all of the items is improved / improved/ got better /gone up. (when listening to music.)	<i>Either:</i> M1 for probability (0.1132) M1 dep for comparison A1 dep E1 dep on all previous marks for conclusion in context	
		Or: Critical region for the test is {9,10,11,12,13,14,15} 8 does not lie in the critical region. So not enough evidence to reject H ₀ Conclude that there is not enough evidence to indicate that the probability of remembering all of the items is improved / improved/ got better /gone up. (when listening to music.)	<i>Or:</i> M1 for correct CR(no omissions or additions) M1 dep for 8 does not lie in CR A1 dep E1 dep on all previous marks for conclusion in context	
		<i>Or</i> : The smallest critical region that 8 could fall into is $\{8, 9, 10, 11, 12, 13, 14, and 15\}$. The size of this region is 0.1132 0.1132 > 5% So not enough evidence to reject H ₀ Conclude that there is not enough evidence to indicate	Or: M1 for CR{8,9,15} and size = 0.1132 M1 dep for comparison A1 dep	4
		that the probability of remembering all of the items is improved (when listening to music)	E1dep on all previous marks for conclusion in context TOTAL	8

G241

		Section B		
6	(i)	(A) P(both rest of UK) = 0.20×0.20 = 0.04	M1 for multiplying A1cao	2
		(B) Either: All 5 case P(at least one England) = $(0.79 \times 0.20) + (0.79 \times 0.01) + (0.20 \times 0.79) + (0.01 \times 0.79) + (0.79 \times 0.79)$ = 0.158 + 0.0079 + 0.158 + 0.0079 + 0.6241 = 0.9559 Or P(at least one England) = 1 - P(neither England) = 1 - (0.21 × 0.21) = 1 - 0.0441 = 0.9559 or listing all = 1 - { (0.2 × 0.2) + (0.2 × 0.01) + (0.01 × 0.20) + (0.01x)}	M1 for any correct term (3case or 5case) M1 for correct sum of all 3 (or of all 5) with no extras A1cao (condone 0.96 www) <i>Or</i> M1 for 0.21 × 0.21 or for (**) fully	
		$ \begin{array}{l} 0.01) \\ = 1 - (**) \\ = 1 - \{ 0.04 + 0.002 + 0.002 + 0.0001) \\ = 1 - 0.0441 \\ = 0.9559 \end{array} $	enumerated or 0.0441 seen M1 dep for 1 - (1 st part) A1cao	3
		Or: All 3 case P(at least one England) = = $0.79 \times 0.21 + 0.21 \times 0.79 + 0.79^2$ = $0.1659 + 0.1659 + 0.6241$ = 0.9559	See above for 3 case	
		(C)Either 0.79 x 0.79 + 0.79 x 0.2 + 0.2 x 0.79 + 0.2 x 0.2 = 0.9801 Or 0.99 × 0.99 = 0.9801 Or 1 - { 0.79 x 0.01 + 0.2 x 0.01 + 0.01 x 0.79 + 0.01 x 0.02 + 0.01 ² } = 1 - 0.0199 = 0.9801	M1 for sight of all 4 correct terms summed A1 cao (condone 0.98 www) <i>or</i> M1 for 0.99 x 0.99 A1cao <i>Or</i>	2
			M1 for everything $1 - \{\dots, \}$ A1cao	

(ii)	P(both the rest of the UK neither overseas)	M1 for numerator of 0.04 or 'their answer to	
(iii)	$= \frac{P(\text{the rest of the UK and neither overseas})}{P(\text{neither overseas})}$ $= \frac{0.04}{0.9801} = 0.0408$ {Watch for: $\frac{answer(A)}{answer(C)}$ as evidence of method (p <1)}	 (i)(A)' M1 for denominator of 0.9801 or 'their answer to (i) (C)' A1 FT (0 	3
	(A) Probability = $1 - 0.79^5$ = $1 - 0.3077$ = 0.6923 (accept awrt 0.69) see additional notes for alternative solution (B) $1 - 0.79^n > 0.9$	M1 for 0.79 ⁵ or 0.3077 M1 for 1 – 0.79 ⁵ dep A1 CAO	
	EITHER: $1 - 0.79^n > 0.9 \text{ or } 0.79^n < 0.1$ (condone = and \geq throughout) but not reverse inequality $n > \frac{\log 0.1}{\log 0.79}$, so $n > 9.768$ Minimum $n = 10$ Accept $n \geq 10$	M1 for equation/inequality in n (accept either statement opposite) M1(indep) for process of using logs i.e. $\frac{\log a}{\log b}$ A1 CAO	3
	OR (using trial and improvement): Trial with 0.79^9 or 0.79^{10} $1 - 0.79^9 = 0.8801 (< 0.9)$ or $0.79^9 = 0.1198 (> 0.1)$ $1 - 0.79^{10} = 0.9053 (> 0.9)$ or $0.79^{10} = 0.09468$ (< 0.1) Minimum $n = 10$ Accept $n \ge 10$ MOTE: $n = 10$ unsupported scores SC1 only	M1(indep) for sight of 0.8801 or 0.1198 M1(indep) for sight of 0.9053 or 0.09468 A1 dep on both M's cao	3
		TOTAL	16

7	(i)	Desiding	D1	1
	(ii)	Positive Number of people = $20 \times 33 (000) + 5 \times 58 (000)$ = $660 (000) + 290 (000) = 950 000$	B1 M1 first term M1(indep) second term A1 cao NB answer of 950 scores	1 3
	(iii)	(A) $a = 1810 + 340 = 2150$ (B) Median = age of 1 385 (000 th) person or 1385.5 (000) Age 30, cf = 1 240 (000); age 40, cf = 1 810 (000) Estimate median = (30) + $\frac{145}{570} \times 10$	M2A0 M1 for sum A1 cao 2150 or 2150 thousand but not 215000 B1 for 1 385 (000) or 1385.5	2
		Median = 32.5 years (32.54) If no working shown then 32.54 or better is needed to gain the M1A1. If 32.5 seen with no previous working allow SC1	M1 for attempt to interpolate $\frac{145k}{570k} \times 10$ (2.54 or better suggests this) A1 cao min 1dp	3
	(iv)	Frequency densities: 56, 65, 77, 59, 45, 17 (accept 45.33 and 17.43 for 45 and 17)	B1 for any one correct B1 for all correct (soi by listing or from histogram)	
			Note: all G marks below <i>dep</i> on attempt at frequency density, NOT frequency	
			G1 Linear scales on both axes (no inequalities) G1 Heights FT their listed fds or all must be correct. Also widths. All blocks joined	5
			G1 Appropriate label for vertical	

		TOTAL	20
(vi)	Mean increase ↑ median unchanged (-) midrange increase ↑ standard deviation increase ↑ interquartile range unchanged. (-)	Any one correct B1 Any two correct B2 Any three correct B3 All five correct B4	4
(vi)	The modal group in Inner London is 20-30 but in Outer London it is 30-40 Outer London has a greater proportion (14%) of aged 65+ <u>All</u> populations in <u>each</u> age group are higher in Outer London Outer London has a more evenly spread distribution or balanced distribution (ages) o.e.	Any one correct	2
(v)	Any two suitable comments such as: Outer London has a greater proportion (or %) of people under 20 (or almost equal proportion)	E1 E1	
		scale eg 'Frequency density (thousands)', 'frequency (thousands) per 10 years', 'thousands of people per 10 years'. (allow key). OR f.d.	

G242 Statistics 2

1		(i)	Scots pine seedlings occur randomly and independently		
			with uniform mean rate.	B1	2
				B1	
1	Α	(ii)	$e^{-8} \times 8^7 \div 7!$ (0.4530-03134 from tables)	M1	
			0.1396	A1	2
	B		$1 - P(X \le 7)$	M1	
			1-0.4530		
			0.547	A1	2
1		(iii)	$\begin{array}{c} (0.547) \\ (1 - (ii)B)^5 \\ 1 - 0.453^5 \end{array} \qquad [= 0.453^5] \end{array}$	M1	
			$1 - 0.453^{5}$	M1	
			0.9809	A1	3
1		(iv)	P(height > 70) = P(Z > $\frac{70-56}{20}$) = P(Z > 0.7)	M1	
			20	A 1	
			$= 1 - \Phi(0.7) = 1 - 0.7580 (= 0.242 \text{ (answer given)})$	A1	2
1		(v)	z = 1.645	B1 (±)	
			$-1.645 \times 20 + 56$	M1 (-ive z)	
			23.1	A1	3
2		(i)	Mean = 185	B1	
			Variance = 210.727	B1	2
2		(ii)	$H_0: \mu = 175 \& H_1: \mu > 175$	B1	
			Where μ represents the mean decrease for the underlying	B1	
			population.		
				M1	
			$t = \frac{185 - 175}{SD/\sqrt{12}} = 2.39 \text{ (3s.f.)}$	A1 FT	
			$\frac{5D}{\sqrt{12}}$		
			11 degrees of freedom	B1	
			At 5% level, critical value of <i>t</i> is 1.796	B1	
			2.39 > 1.796 so the result is significant.	M1A1	
			Evidence suggests the mean decrease in cholesterol level		
			is more than 175.	A1	9
2		(iii)	The decrease in cholesterol level in the underlying	E1(Normal)	-
-		(111)	population follows a Normal distribution. The sample is	E1(Random)	2
			assumed to be random.		-
L	I			l	

3	(i)	H_0 : there is no association between gum disease and coronary artery disease H_1 : there is an association between gum disease and coronary artery diseaseExpected frequenciesWith g.d.With c.a.d48.6236.38Without c.a.d.94.3870.62Contributions to X^2 (without Yates' correction)	B1 M1 A1	
		With g.d.Without g.d.With c.a.d 1.52827 2.04245 Without c.a.d. 0.78729 1.05217 Contributions to X^2 (with Yates' correction)With g.d.With g.d.Without g.d.With c.a.d 1.35612 1.81238	M1 M1 (summation)	
		With e.a.d1.530121.61250Without c.a.d.0.698610.93365 $X^2 = 5.4102$ (or 4.8008 with Yates' correction)1 degree of freedomCritical value at 5% level is 3.841As 5.4102 (or 4.8008) > 3.841 the result is significantThere is evidence of an association between gumdisease and coronary artery disease	A1 CAO B1 B1 M1 A1(in context)	10
3	(ii)	2 degrees of freedom Critical value at 5% level is 5.991 8.2808 > 5.991 the result is significant There is evidence of an association between age and coronary artery disease	B1 B1 M1 A1(in context)	4
3	(iii)	Suitable comments (in context)	E1 E1	2

4		H ₀ : population median = 26 H ₁ : population median < 26 Actual differences -3 17 -10 -11 -4 7 1 -15 -8 -2 -16 -6 Associated ranks 3 12 8 9 4 6 1 10 7 2 11 5 T = 3 + 8 + 9 + 4 + 10 + 7 + 2 + 11 + 5 = 59 $T^+ = 12 + 6 + 1 = 19$ $\therefore T = 19$ From tables – at the 5% level of significance in a one-tailed Wilcoxon signed rank test, the critical value of <i>T</i> is 17 19 > 17 ∴ the result is not significant The evidence does not suggest a decrease in the numbers of ants this year.	B1 B1 B1 M1 A1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1	12
4	(ii)	Variable - symmetry Sample - random	E1 E1	2

5	(i)	If hamsters choose their bedding randomly then the three options will be equally likely to occur. Hence the probability that a hamster chooses the new material will be $\frac{1}{3}$.	E1	1
5	(ii)	0.0390, 0.1561, 0.2731, 0.2732, 0.1707, 0.0682, 0.0197	M1 A2	
		5.85, 23.415, 40.965, 40.98, 25.605, 10.23, 2.955	M1 A1	5
5	(iii) $H_0: B(8, \frac{1}{3})$ is a good model $H_1: B(8, \frac{1}{3})$ is not a good model	B1	
		Merge final two cells.	M1	
		$X^{2} = \frac{(10-5.85)^{2}}{5.85} + \frac{(31-23.415)^{2}}{23.415} + \frac{(42-40.965)^{2}}{40.965} +$	$MI \left[(o-e)^2 / e \right]$	
		$\frac{(34-40.98)^2}{40.98} + \frac{(19-25.605)^2}{25.605} + \frac{(14-13.185)^2}{13.185}$	M1 [sum]	
		= 8.370	A1	
		5 degrees of freedom (6-1)	B1 B1	
		Critical value at 5% level is 11.07 (FT their dof)	M1	
		8.370 < 11.07 the result is not significant.	A1	
		No evidence to suggest the binomial distribution is not a good model.		9

G243 Statistics 3

1		(i)	Quota sampling. Advantage – probably the only realistic way to get a reasonably 'representative' sample in these circumstances. Disadvantage – non-random, so statistical analysis is complicated.	B1 ~ E1 E1	Or other sensible comments. Eg cost or time effective as an advantage	3
	(a)	(ii)	Noney spent (£)	G1 G1	Axes, including labels. Correct zero.	
			Distance travelled (miles)	G1	All points correct (allow 2 errors).	3
	(b)		Ranks: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 3 18 1 9 8 2 14 6 5 12 7 10 4 13 19 15 20 11 17 16 d 2 16 2 5 3 4 7 2 4 2 9 1 4 1 3 7 2 4	B2	Allow B1 if one or two errors.	
			$r_s = 1 - \frac{6 \times 584}{20 \times 399} = 1 - 0.4391 = 0.5609$	M1 A1	CAO.	
			Critical point for $n=20$ at two-sided 5% level is 0.4466 Significant. Seems there is an association between distance travelled and money spent.	$ \begin{array}{c} B1 \\ E \\ E \\ E \end{array} $	No FT if wrong. No access to these marks if value of r _s is nonsense.	7
	(c)		Some sensible explanation of "no". Scatter diagram does not suggest bivariate Normality.	M1 A1	SC1. Allow 1 out of 2 if "bivariate" missing. SC2. Allow 1 out of 2 for sensible comment re "outliners". No marks for "data not linear".	2
2		(i)			Do not allow	
			$H_0: \mu_A = \mu_B$ $H_1: \mu_A \neq \mu_B$	B1 B1	$\overline{A}, \overline{B}$ or similar unless they are clearly and explicitly stated to	
			Where μ_A , μ_B are the population mean lengths for the machines.	B1	be <u>population</u> means. Hypotheses in words must include "population".	

G243

			1		
		$\overline{x}_{1} = \frac{184.5}{90} = 2.05$ $\overline{x}_{2} = \frac{156.0}{75} = 2.08$	B1	For adequate verbal definition. Allow absence of "population" here if correct notation μ has	
		$s_1^2 = \frac{1}{89}(396.94 - \frac{184.5^2}{90}) = \frac{18.715}{89} = 0.2103$		been used.	
		$s_2^2 = \frac{1}{74} (334.19 - \frac{156.0^2}{75}) = \frac{9.71}{74} = 0.1312$	M1	M0 A0 for divisor <i>n</i> , but FT.	
		Because the samples are large, the values of	A1	Accept as implicit	
		s_1^2 and s_2^2 are taken as σ_1^2 and σ_2^2 .	M1	if s_1^2 and s_2^2 are correctly used in sequel.	
		Two-sample test based on $N(0,1)$.	M1		
		Test statistic is: $\frac{2.05 - 2.08 \ (-0)}{\sqrt{\frac{0.2103}{90} + \frac{0.1312}{75}}} = -\frac{0.03}{\sqrt{0.004086}} = -\frac{0.03}{0.0639} = -0.46 \ (93)$	M1 A1	Accept usual alternatives.	
		Double-tailed 10% point of N(0,1) is 1.645. Not significant. No reason to suppose mean lengths differ.	A1 E1 E1	No FT if wrong.	
					13
	(ii)	Samples are large, so by the Central Limit Theorem the underlying distribution of the sample means will be approximately Normal.	E2	(2, 1, 0)	2
3					
	(i)	Differences are: 14 16 6 -8 -24 12 2 -15 10 -1 Ranks of $ d $ 7 9 3 4 10 6 2 8 5 1	B1 M1 A1	FT if M1 earned or if d (not d) ranked.	
		Test statistic is 4+10+8+1=23 (or 7+9+3+6+2+5=32)	M1 A1	FT if M1 earned.	
		Refer to paired Wilcoxon table with $n=10$.	M1	No FT if wrong.	
		Need lower $2\frac{1}{2}\%$ point which is 8 (or, if 32 used, upper $2\frac{1}{2}\%$ point which is 47).	A1	No FT if wrong.	
		Not significant.	E1		
		Seems underlying median total journey times may be assumed equal.	E1		9
	(ii)	The "pairing" will eliminate any differences between the weeks - so can compare the two airlines.	E1 E1		2

	(iii)	 Two sensible comments such as: check-in and waiting times not in airlines' control time for collecting luggage not in airlines' control other journey criteria might be of importance (e.g. departure time, on-board service, fares). 	E2 E2	Reward any two sensible comments for (E2 each) (2,1,0). For 2 marks there must be some comment to the effect of <u>comparison</u> , not merely that a factor might affect both airlines.	4
4					
	(i)	Randomisation: to guard against possible unsuspected sources of bias - caused by fertility patterns among the plots.	E1 E1	Or equivalent comments.	2
	(ii)	Replication: so that natural variation can be measured, so that any observed inter-variety variation can be compared with it.	E1 E1	Or equivalent comments.	2
	(iii)	Normality of <u>both populations</u> , equal <u>population</u> variances. $H_{0}: \mu_{A} = \mu_{B}$ $H_{1}: \mu_{A} \neq \mu_{B}$ where μ_{A}, μ_{B} are the population means for varieties A and B. A: $\overline{x} = 23.50$, $s_{n-1} = 0.9529$ B: $\overline{y} = 21.94$, $s_{n-1} = 0.8649$ Pooled $s^{2} = \frac{(5 \times 0.908) + (4 \times 0.748)}{9} = \frac{7.532}{9} = 0.8368$ Test statistic is $\frac{23.50 - 21.94(-0)}{\sqrt{0.8368}\sqrt{\frac{1}{6} + \frac{1}{5}}}$ $= \frac{1.56}{0.5539(5)} = 2.816$	 B1 B1 B1 B1 B1 M1 M1 M1 M1 A1 	Do not allow $\overline{A}, \overline{B}$ or similar unless they are clearly and explicitly stated to be <u>population</u> means. Hypotheses in words must include "population". Do not allow s_n : 0.8699,0.7736 For any reasonable attempt at pooling. If correct. For numerator. For $\sqrt{0.8368}$ (or cand's value). For $\sqrt{\frac{1}{6} + \frac{1}{5}}$. FT from here if all	
		Refer to $t_{9.}$ Double-tailed 5% point is 2.262.		M marks earned.	

	Significant.	M1	No FT if wrong.	
	Appears that population mean yields are different.	A1	[accept usual	15
		E1	No FT if wrong.	
		E1	[alternatives.]	
(iv)	The pairing will eliminate differences around the field.	E1		
	- can compare the plots within the pairs.	E1		
				2
(v)	Refer to t_{4}	M1	No FT if wrong.	
	Single-tailed 5% point is 2.132.	A1	No FT if wrong.	
	Not significant.	E1		
	No evidence to reject NH that population mean yields of A			
	and V are the same.	E1		
	Normality	B1		
	of underlying population of differences.	B1		6

Grade Thresholds

Advanced Subsidiary GCE Statistics MEI (H132) June 2008 Examination Series

Unit Threshold Marks

Unit		Maximum Mark	а	b	С	d	е	u
G241	Raw	72	53	45	38	31	24	0
	UMS	100	80	70	60	50	40	0
G242	Raw	72	56	49	42	35	28	0
	UMS	100	80	70	60	50	40	0
G243	Raw	72	56	48	40	33	26	0
	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	E	U
H132	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	В	С	D	E	U	Total Number of Candidates
H132	9.7	12.9	35.5	51.6	64.5	100	31

For a description of how UMS marks are calculated see: <u>http://www.ocr.org.uk/learners/ums_results.html</u>

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

