GCE

Statistics (MEI)

Mark Scheme for the Units

June 2007

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2007
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08708706622
Facsimile: 08708706621
E-mail: publications@ocr.org.uk

CONTENTS

Advanced Subsidiary GCE Statistics (H132)

MARK SCHEMES FOR THE UNITS

Unit	Content	Page
G241	Statistics 1	1
G242	Statistics 2	7
G243	Statistics 3	11
*	Grade Thresholds	16

Mark Scheme G241
 June 2007

$\begin{aligned} & \text { Q1 } \\ & \text { (i) } \end{aligned}$	$\binom{8}{4} \text { ways to select }=70$					M1 for $\binom{8}{4}$ A1 CAO	
(ii)	$4!=24$					B1 CAO	
						TOTAL	
$\begin{aligned} & \hline \text { Q2 } \\ & \text { (i) } \end{aligned}$	Amount Frequency	$\begin{gathered} 0-<20 \\ \hline 800 \end{gathered}$	$\begin{gathered} 20-<50 \\ \hline 480 \end{gathered}$	$\begin{array}{\|c\|} \hline 50-<100 \\ \hline 400 \\ \hline \end{array}$	$\frac{100-<200}{200}$	B1 for amounts B1 for frequencies	
(ii)	$\begin{aligned} & \text { Total } \approx \\ & 10 \times 800+35 \times 480+75 \times 400+150 \times 200=£ 84800 \end{aligned}$					M1 for their midpoints \times their frequencies A1 CAO	
						TOTAL	
Q3 (i)	$\begin{aligned} & \text { Mean }=\frac{3026}{56}=54.0 \\ & S_{x x}=178890-\frac{3026^{2}}{56}=15378 \\ & s=\sqrt{\frac{15378}{55}}=16.7 \end{aligned}$					B1 for mean M1 for attempt at $S_{x x}$ A1 CAO	
(ii)	$\bar{x}+2 s=54.0+2 \times 16.7=87.4$ So 93 is an outlier					M1 for their $\bar{x}+2 \times$ their s A1 FT for 87.4 and comment	
(iii)	New mean $=1.2 \times 54.0-10=54.8$ New $s=1.2 \times 16.7=20.1$					$\begin{aligned} & \text { B1 FT } \\ & \text { M1A1 FT } \end{aligned}$	
						TOTAL	
$\begin{aligned} & \text { Q4 } \\ & \text { (i) } \end{aligned}$	(A) $P($ at least one $)=\frac{36}{50}=\frac{18}{25}=0.72$ (B) $\quad \mathrm{P}($ exactly one $)=\frac{9+6+5}{50}=\frac{20}{50}=\frac{2}{5}=0.4$					B1 aef M1 for $(9+6+5) / 50$ A1 aef	
(ii)	$\mathrm{P}(\text { not paper } \mid \text { aluminium })=\frac{13}{24}$					M1 for denominator 24 or $24 / 50$ or 0.48 A1 CAO	
(iii)	$P(\text { one kitchen waste })=2 \times \frac{18}{50} \times \frac{32}{49}=\frac{576}{1225}=0.470$					M1 for both fractions M1 for $2 \times$ product of both, or sum of 2 pairs A1	
						TOTAL	

$\begin{aligned} & \text { Q5 } \\ & \text { (i) } \end{aligned}$	$11^{\text {th }}$ value is $4,12^{\text {th }}$ value is 4 so median is 4 Interquartile range $=5-2=3$	B1 M1 for either quartile A1 CAO	3
(ii)	No, not valid any two valid reasons such as : - the sample is only for two years, which may not be representative - the data only refer to the local area, not the whole of Britain - even if decreasing it may have nothing to do with global warming - more days with rain does not imply more total rainfall - a five year timescale may not be enough to show a long term trend	B1 E1 E1	3
		TOTAL	6
$\begin{aligned} & \text { Q6 } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \text { Either } \mathrm{P}(\text { all } 4 \text { correct })=\frac{4}{7} \times \frac{3}{6} \times \frac{2}{5} \times \frac{1}{4}=\frac{1}{35} \\ & \text { or } \mathrm{P}(\text { all } 4 \text { correct })=\frac{1}{{ }^{7} \boldsymbol{C}_{4}}=\frac{1}{35} \end{aligned}$	M1 for fractions, or ${ }^{7} \mathrm{C}_{4}$ seen A1 NB answer given	2
(ii)	$\begin{aligned} & E(X)=1 \times \frac{4}{35}+2 \times \frac{18}{35}+3 \times \frac{12}{35}+4 \times \frac{1}{35}=\frac{80}{35}=2 \frac{2}{7}=2.29 \\ & E\left(X^{2}\right)=1 \times \frac{4}{35}+4 \times \frac{18}{35}+9 \times \frac{12}{35}+16 \times \frac{1}{35}=\frac{200}{35}=5.714 \\ & \operatorname{Var}(X)=\frac{200}{35}-\left(\frac{80}{35}\right)^{2}=\frac{24}{49}=0.490 \text { (to } 3 \text { s.f.) } \end{aligned}$	M1 for . rp (at least 3 terms correct) A1 CAO M1 for $x^{2} p$ (at least 3 terms correct) M1dep for - their $\mathrm{E}(X$ $)^{2}$ A1 FT their $\mathrm{E}(X)$ provided $\operatorname{Var}(X)>0$	5
		TOTAL	7

| Q7 | Section B |
| :--- | :--- | :--- | :--- | :--- |
| (i) | |

$\begin{aligned} & \text { Q8 } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & X \sim \mathrm{~B}(17,0.2) \\ & \mathrm{P}(X \geq 4)=1-\mathrm{P}(X \leq 3) \\ &=1-0.5489=0.4511 \end{aligned}$	B1 for 0.5489 M1 for 1 - their 0.5489 A1 CAO	3
(ii)	$\mathrm{E}(\mathrm{X})=n p=17 \times 0.2=3.4$	M1 for product A1 CAO	2
(iii)	$\begin{aligned} & \mathrm{P}(X=2)=0.3096-0.1182=0.1914 \\ & \mathrm{P}(X=3)=0.5489-0.3096=0.2393 \\ & \mathrm{P}(X=4)=0.7582-0.5489=0.2093 \end{aligned}$ So 3 applicants is most likely	B1 for 0.2393 B1 for 0.2093 A1 CAO dep on both B1s	3
(iv)	(A) Let $p=$ probability of a randomly selected maths graduate applicant being successful (for population) $\mathrm{H}_{0}: p=0.2$ $\mathrm{H}_{1}: p>0.2$ (B) $\quad \mathrm{H}_{1}$ has this form as the suggestion is that mathematics graduates are more likely to be successful.	B1 for definition of p in context B1 for H_{0} B1 for H_{1} E1	4
(v)	$\begin{aligned} & \text { Let } X \sim \mathrm{~B}(17,0.2) \\ & \mathrm{P}(X \geq 6)=1-\mathrm{P}(X \leq 5)=1-0.8943=0.1057>5 \% \\ & \mathrm{P}(X \geq 7)=1-\mathrm{P}(X \leq 6)=1-0.9623=0.0377<5 \% \end{aligned}$ So critical region is $\{7,8,9,10,11,12,13,14,15,16,17\}$	B1 for 0.1057 B1 for 0.0377 M1 for at least one comparison with 5\% A1 CAO for critical region dep on M1 and at least one B1	4
(vi)	Because $\mathrm{P}(X \geq 6)=0.1057>10 \%$ Either: comment that 6 is still outside the critical region Or comparison $\mathrm{P}(X \geq 7)=0.0377<10 \%$	$\begin{aligned} & \mathrm{E} 1 \\ & \mathrm{E} 1 \\ & \hline \end{aligned}$	2
		TOTAL	18

Mark Scheme G242
 June 2007

1(i)	$\begin{aligned} \mathrm{P}(X<30) & =\mathrm{P}\left(Z<\frac{30-26}{2.4}\right) \\ & =\mathrm{P}(Z<1.666 . .) \\ & =0.952(3 \mathrm{sf}) \end{aligned}$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array}$	3
1(ii)	$\begin{aligned} & \Phi^{-1}(0.99)=2.326 \\ & \frac{x-26}{2.4}=2.326 \quad \text { (Equation in positive } z \text {) } \\ & \\ & x=31.58 \text { (CAO) } \\ & \text { must leave at } 0628 \text { (dependent on M1) } \\ & \hline \end{aligned}$	B1 M1 A1 A1 FT	4
1(iii)	$\begin{aligned} & \text { C.I. centred on } 67.4 \\ & 67.4 \pm 1.96 \times 2.45 \div \sqrt{ } 30 \quad \text { (B1 for } 1.96) \\ & (66.5,68.3) \end{aligned}$	M1 B1 M1 A1 (FT sensible z)	4
1(iv)	The Cl does not contain the scheduled journey time of 65 minutes. This suggests that the scheduled time is not accurate. The mean journey time could be greater than 65 minutes.	$\begin{aligned} & \text { E1(65 not in) } \\ & \text { E1(suggests) } \\ & \text { E1(mean } \\ & \text { greater) } \\ & \hline \end{aligned}$	3
1(v)	Valid comment on sample size. Valid comment on randomness.	$\begin{aligned} & \hline \text { E1 } \\ & \text { E1 } \\ & \hline \end{aligned}$	2
2(i)	From tables - at the 5% level of significance in a one-tailed Wilcoxon signed rank test, the critical value of T is 30 $33>30 \therefore$ the result is not significant The evidence does not suggest an increase in the numbers of Manx Shearwaters flying past the observatory at this time of year.	B1 B1 M1 M1 A1 B1 B1 B1FT B1 M1 A1 E1	12
2(ii)	Variable - symmetry about median Sample - random	$\begin{array}{\|l\|} \hline \text { E1 } \\ \text { E1 } \end{array}$	2

3(i)	mean $=45.9$ standard deviation $=4.65$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	2
3(ii)	$\mathrm{H}_{0}: \mu=50 \quad \& \quad \mathrm{H}_{1}: \mu<50$ Where μ represents the mean fungicide level in the underlying population. $t=\frac{45.9-50}{S D / \sqrt{10}}=-2.79 \text { (3s.f.) }$ 9 degrees of freedom At 5% level, critical value of $t=1.833$ $-2.79<-1.833$ so the result is significant Evidence suggests the mean level of fungicide in the crop is below the agreed safe level.	B1 E1 M1 A1 B1 B1 M1 A1 A1	9
3(iii)	The amount of fungicide in the underlying population follows a Normal distribution	E1(Normal) E1dep(popㅁ)	2
4(i)	Bacteria occur randomly with a uniform mean rate of occurrence	E1(random) E1 (uniform mean rate)	2
4(ii)A	$\begin{aligned} & \Sigma f x \div \Sigma f \\ & =580 \div 200=2.9 \text { (A.G.) } \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \end{aligned}$	2
4(ii)B	Variance $=1.762^{2}=3.1046 \ldots$ mean \approx variance so does not give reason to doubt suitability of the Poisson model	B1 E1dep	2
4(iii)	$\begin{aligned} & \mathrm{P}(X=0)=0.055 \\ & \mathrm{P}(X=1)=0.1596 \\ & \mathrm{P}(X \geq 8) 0.0099 \\ & 11(X=0), 31.92(X=1), 1.98(X \geq 8) \end{aligned}$	B1 B1 B1 M1 (×200) A1	5
4(iv)	6 degrees of freedom ($8-1-1$) Critical value at 5% level is $X^{2}=12.59$ $9.032<12.59$ so not significant The Poisson model seems a good fit.	M1 (for 8-1- 1) A1 M1 A1 (F.T. sensible c.v.)	4

Mark Scheme G243 June 2007

$\begin{aligned} & \hline \text { Q2 } \\ & \text { (i) } \end{aligned}$	 Looks strongly linear.	G1 G1 G1 B1	Axes, including labels. " x " and " y " suffice as they are defined in the question. Clear "break" in the x-axis. All points correct (allow one error). Comments re bivariate Normality may be rewarded in part (iii).	4
(ii)	$r=0.9774$ If used: $\begin{array}{rll} \sum x=33361 & \sum x^{2}=75604869 & S_{x x}=1407780.9 \\ \sum y=205.9 & \sum y^{2}=3870.63 & S_{y y}=1044.3093 \\ & \sum x y=495410.1 & S_{x y}=37474.773 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Regard as implicit from correct answer.	2
(iii)	Bivariate Normality. Yes - (long thin!) "cigar" shape.	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \end{aligned}$		2
(iv)	H_{0} is $\rho=0$ where ρ is the correlation coefficient for the underlying bivariate population. From tables, upper 1% point for $n=15$ is 0.5923 Significant. Seems there is a positive correlation between traffic flow and air pollution.	B1 B1 A1 E1 E1	No FT if wrong.	5
(v)	For any sensible comments, such as: - correlation does not necessarily imply causation. - there could be another confounding factor - this might be a "false positive".	$\begin{aligned} & \text { E1, } \\ & \text { E1 } \end{aligned}$		2

$\begin{aligned} & \hline \text { Q3 } \\ & \text { (i) } \end{aligned}$	H_{0} : the medians of the two populations are the same. H_{1} : the medians of the two populations are different. [Or more formal statements.] Wilcoxon rank sum test (or Mann-Whitney form thereof). Ranks are: $\begin{array}{llllllllllllllll} \text { A } & 5 & 15 & 6 & 3 & 18 & 10 & 7 & 1 & 4 & 11 & & & \\ \text { B } & 8 & 2 & 22 & 13 & 9 & 20 & 14 & 19 & 17 & 16 & 21 & 12 \end{array}$ Rank sum for smaller sample is 80 . Refer to $(10,12)$ table. Two-tail 5% critical value is 84 [or 29 for MW]. Significant. Seems median heights are different.	B1 B1 M1 M1 A1 B1 M1 A1 E1 E1	Allow 1 for "medians", but require "population" for second mark. Combined ranking. All ranks correct (FT if M1 earned). [Or M-W statistic = $1+6+1+1+8+3+1+0+1+3=25]$ No FT from here if wrong. No FT from here if wrong.	10
(ii)	A No, seems to need "pairing". B Not clear-cut, perhaps no strong reason for "pairing", but large-scale weather systems affecting whole country might be important.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	Or other sensible comments.	5

| Q4
 (i) | Need to define the region geographically.
 Age and/or sex sub-classifications?
 May be problems of people who go out
 of/come into the region to buy goods.
 Frequency of purchase sub-classifications? | E1 | E1 | E1 |
| :--- | :--- | :--- | :--- | :--- | Or other sensible comments | E1 |
| :--- |

Unit Threshold Marks

Unit	Maximum Mark	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{u}	
G241	Raw	72	55	48	41	35	29	0
	UMS	100	80	70	60	50	40	0
G242	Raw	72	58	50	43	36	29	0
	UMS	100	80	70	60	50	40	0
G243	Raw	72	58	50	43	36	29	0
	UMS	100	80	70	60	50	40	0

Specification Aggregation Results
Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
H132	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
H132	14.3	42.9	71.4	85.7	100	100	7

For a description of how UMS marks are calculated see; www.ocr.org.uk/OCR/WebSite/docroot/understand/ums.jsp

Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
(General Qualifications)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

