AQA

A-LEVEL Statistics

SSO5
Mark scheme

6360
June 2016

Version 1.0: Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Vor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
C	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Mark	Total	Comment
1(a)(i)	$\begin{aligned} & s=3.90, \mathrm{~s}^{2}=15.2 \\ & \text { or } \sum(x-\bar{x})^{2}=197.9 \end{aligned}$	B1		```Stated or used awfw 3.89 ~3.91 (3.90179...) , awfw 15.1~15.3 9 (15.224...) or awfw 197 ~ 199 (197.912...)```
	$98 \% \text { limits for } \chi_{13}^{2}=4.107,27.688$	B1, B1		accept 3 sf or better. If B0, B0 then s.c. B1 for sight of 13 degrees of freedom.
	$\begin{aligned} & \text { CI limits for variance: } \\ & \frac{13 \times 3.90^{2}}{27.688}, \\ & \text { Limits } 7.15,48.19 \end{aligned}$	M1, m1 A1	6	M1: correct form for at least one limit, condone $14 \mathrm{~s}^{2}$, ft on χ^{2} values. m 1 : both expressions completely correct. Both : awfw 7.1 ~ 7.2 , 48 ~ 48.3
(ii)	$5 \mathrm{ml}^{2}$ is less than the lower limit of the CI . Jamal's suspicion is verified	B1ft E1dep	2	B1 ft comment on their CI E1 dep on A1 in (a)
(b)	Lower limit of $95 \% \mathrm{CI}$ is greater than that of 98% interval, Kajika will come to the same conclusion as Jamal.	$\begin{gathered} \text { E1 } \\ \text { E1dep } \end{gathered}$	2	Or $95 \% \mathrm{CI}$ is narrower than a $98 \% \mathrm{CI}$ oe E1 dep on first E1 and A1 in (a)
	Total		10	
a(ii) B1 ft accept "below CI" but NOT " not within CI" and cand. must be using $5 \mathrm{ml}^{2}$ for the comparison. (b) E1 accept" lower limit is increased" or" lower limit is higher .." but NOT "CI is higher" E1 dep - cand. must be using $5 \mathrm{ml}^{2}$ in a(ii).				

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Mark \& Total \& Comment \\
\hline 2(a)(i) \& \begin{tabular}{l}
\[
\text { Area }=1 \Rightarrow 50 k=1
\] \\
so
\[
k=\frac{1}{50}
\]
\end{tabular} \& M1
A1 \& \& \begin{tabular}{l}
M1 for sight of \(130-80=50\); may be by using integration or may be from a graph. \\
note: must have sight of " \(k=\) " to award A1 \\
ALT:
\[
k=\frac{1}{b-a}=\frac{1}{130-80} \mathrm{M} 1=\frac{1}{50} \quad \mathrm{~A} 1
\]
\end{tabular} \\
\hline (ii) \& \begin{tabular}{l}
\[
\mathrm{P}(X=100)=0
\] \\
Impossible to estimate a 1 m length exactly
\end{tabular} \& B1 \& 4 \& o.e. \\
\hline \[
\begin{gathered}
\text { (b)(i) } \\
\text { (ii) }
\end{gathered}
\] \& \[
\text { Mean }=105
\]
\[
\text { S.D. }=\sqrt{\frac{2500}{12}}=\sqrt{208.33 . .}=14.4
\] \& \[
\begin{aligned}
\& \hline \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& 2 \& cao
awrt (14.4337...) \\
\hline (c)(i)

(ii) \& \[
$$
\begin{aligned}
& \mathrm{P}(\text { score }<5)=\mathrm{P}(95<x<105) \\
&=\frac{10}{50} \\
&= 0.2 \\
& X \sim \mathrm{~B}(25,0.2) \\
& \mathrm{P}(X \geq 6)= 1-\mathrm{P}(X \leq 5) \\
&= 1-0.6167 \\
&= 0.3833
\end{aligned}
$$

\] \& | A1 |
| :--- |
| M1 |
| A1 | \& 4 \& | $\text { sc B1 for } \frac{5}{50}=0.1$ |
| :--- |
| Using B($25,0.2$ or 0.1) PI |
| awfw 0.38~ 0.39 $\begin{aligned} & \text { note }: P(X \geq 6) \text { when } X \sim B(25,0.1) \\ & =1-0.9666=0.0334 \end{aligned}$ |

\hline \& Total \& \& 10 \&

\hline
\end{tabular}

Q	Solution	Mark	Total	Comment
3(a)	σ_{w} :s.d. for distances driven with Whizzer balls σ_{s} : s.d. for distances driven with Screamer balls $\begin{aligned} & H_{0}: \sigma_{w}^{2}=\sigma_{s}^{2} \text { or } H_{0}: \sigma_{w}=\sigma_{s} \\ & H_{1}: \sigma_{w}^{2}>\sigma_{s}^{2} \text { or } H_{1}: \sigma_{w}=\sigma_{s} \end{aligned}$	B1		Both hypotheses; other suffices must be clearly identified. Must use σ or population s.d./variance
	$\begin{aligned} & s_{w}=23.261 \text { or } s_{w}{ }^{2}=541.06 \\ & s_{s}=13.03 \text { or } s_{s}{ }^{2}=169.8 \\ & \left(n_{w}=16\right. \end{aligned}$	B1		Either ; awfw 23.2 ~ 23.3 or 540~ 542 ; 13.0 ~ 13.1or 169 ~ 170
	t.s. $\quad F=\frac{23.26^{2}}{13.03^{2}}=3.19$	M1 A1		awfw 3.135 ~ 3.215 (3.18672...)
	$\text { c.v. } F_{15,11}=2.719$	B1,B1		B1 : df - in order 15,11 PI by correct c.v. B1 c.v. accept 3 sf or better Do not condone \pm Ignore extra value; $\frac{1}{2.507}=$ 0.399
	$3.19>2.719 \text { or } \mathrm{p}=0.029<0.05 ; \text { reject } \mathrm{H}_{0}$	A1 dep		Dep A1 for ts and B1 for cv $p=0.031 \sim 0.028(0.02921 \ldots)$
	Evidence, at the 5\% level, that Lucy's belief is supported.	E1 dep	8	Correct conclusion in context dep previous A1dep. Must indicate some level of uncertainty.
(b)	Samples random and/or independent	E1		Either Do not allow eg "random" or "normal"
	Distances driven with each type of ball must be normally distributed	E1		
			2	
	Total		10	
(a) Alt 1: t.s. $F=\frac{13.03^{2}}{23.26^{2}}=0.314 \mathrm{M} 1 \mathrm{~A} 1$ (awfw $0.311 \sim 0.319$) ; c.v. $\frac{1}{F_{11,15}}=\frac{1}{2.507}=0.399$ B1df B1 cv (awfw 0.398~ 0.40); $0.314<0.399$; reject H0 A1dep; E1 dep as on MS				
Alt 2: Use of p value and if no intermediate evidence seen:				
B1 (hypotheses); $\mathrm{p}=0.031 \sim 0.028$ ($0.02921 \ldots .$.) implies B1 (for variances) M1 A1 for ts (outside this range and they lose all 3 marks) ;comparing 0.029.. <0.05 and rejecting H_{0} implies B1B1 for cv and A1 dep; E1 conclusion as on MS				
(a) alternative conclusion: There is sufficient evidence to suggest that Lucy's driving distances are more variable when she uses a Whizzer ball than when she uses a Screamer ball.				

4(b)	Large sample ; CLT applies Mike's claim correct	E1 E1dep		E1 : mention of CLT o.e. E1 : dep on previous E1
		Total		$\mathbf{1 6}$

(a) (i) NMS each value in range B2
(a) (ii) NMS B1 hypotheses; ts in range M1M1m1A1; $p=0.011(0.009 \sim 0.012)<0.05$; reject H_{0} B1ft B1 ;A1 dep as on MS

Alt: using $\Sigma \frac{O^{2}}{E}-N$: M1 attempt at $\mathrm{O}^{2} / \mathrm{E}$ (at least 4 values correct to 1 sf) ; M1 combining last 2 classes ; m 1 summing and subtracting 200 - must be positive answer , A1 answers $14.5 \sim 15.5$ (14.849).

Use of p value and if no intermediate evidence seen:
B1 hypotheses, $p=0.011$ (0.009~0.013) implies M1 M1m1A1B1ft ; comparing $0.011<0.05$ B1 and correct conclusion in context E1dep (dependent on previous A1 and B1) ;

Q	Solution	Mark	Total	Comment
5a	$\text { Mean }=\frac{1}{\lambda}=40 \text {; variance }=\left(\frac{1}{\lambda}\right)^{2}=1600$	B1,B1		Cao both
5b(i)	$\begin{gathered} \mathrm{P}(\mathrm{~T}>30)=e^{-0.025 \times 30} \\ =0.4724 \end{gathered}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		or $1-\left(1-e^{-0.025 \times 30}\right)=1-0.528$ awfw $0.472 \sim 0.473$ (0.472366...)
b(ii)	$\begin{aligned} \text { On } 2 \text { occasions : prob } & =0.4724^{2} \\ & =0.2231 \end{aligned}$	B1ft	3	awrt $0.223 \sim 0.224$: f.t. on their b (i)
(c)	$\mathrm{P}(\bar{T}>35)=P\left(Z>\frac{35-40}{\sqrt{\frac{1600}{75}}}\right)$	M1		Standardising with 35 and 40 ; condone $\sqrt{40}$ or $\frac{1600}{75}$ as denominator.
	$=\mathrm{P}(\mathrm{Z}>-1.08 . .)$	B1 A1		$\sigma=\sqrt{\frac{1600}{75}}$ or $\sigma^{2}=\frac{1600}{75}$ seen or implied by correct probability. [awrt 4.62 (4.6188..)] awfw -1.08~-1.09
	$=0.860$	A1	4	$0.859 \sim 0.863 \text { (} 0.86049 \ldots)$ NMS $4 / 4$ for a probability in correct range.
	Total		9	

