AQA

A-LEVEL Statistics

SS04 Statistics 4
Mark scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or marks and is for method and accuracy
E	mark is for explanation
Vorft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
2(a)(i)	No. of hits in 1 minute (X)~Po(4) $\begin{aligned} & P(X=3)=0.4335-0.2381 \\ & =0.1954 \end{aligned}$	M1 A1		$\begin{aligned} & \text { Using Poisson here or in (ii) } \\ & \text { Or } P(X=3)=\frac{4^{3}}{3!} e^{-4} \\ & 0.195 \sim 0.196 \end{aligned}$
			2	
(ii)	$\mathrm{P}(3$ hits and 3 from UK$)=0.1954 \times \mathrm{p}$ where $\mathrm{p}=0.8^{3}$ $=0.1954 \times 0.512=0.1(00028)$ Alternative No. of hits in 1 minute from the UK (U) $\sim \operatorname{Po(3.2)}$ No. of hits in 1 minute from outside UK (V) $\sim \operatorname{Po}(0.8)$ $\begin{aligned} & \text { Then } \mathrm{P}(\mathrm{U}=3 \text { and } \mathrm{V}=0)=\mathrm{P}(\mathrm{U}=3) \times \mathrm{P}(\mathrm{~V}=0) \\ & =0.2226 \times 0.4493=0.1(00028) \end{aligned}$	M1 B1 A1 (M1) (B1) (A1)		Their (a)(i) $\times \mathrm{p}$ where $0<\mathrm{p}<1$ 0.8^{3} or 0.512 PI, either alone or in a correct binomial expression or as part of (a)(i) $\times p$ $0.099 \sim 0.101$ Either $\operatorname{Po}(3.2)$ or $\operatorname{Po}(0.8)$ stated or used. PI Either $0.222 \sim 0.223$ or $0.449 \sim 0.450$ $0.099 \sim 0.101$
			3	

Q	Solution	Marks	Total	Comments
3 (a)	$\begin{aligned} & H_{0}: \mu=0.215 \\ & H_{1}: \mu>0.215 \end{aligned}$	B1		Both. Or population mean for μ. Next 4 marks are PI.
	$\bar{x}=0.2343 \quad s=0.01512$	B1		For AWRT 0.234 and $\mathrm{s}_{\mathrm{n}-1}=0.015$ ~ 0.016 or $\mathrm{s}_{\mathrm{n}}=$ AWRT 0.014 (ignore labels)
	$(t=) \frac{0.2343-0.215}{0.01512 / \sqrt{7}}$	M1		M1 for use of $\frac{S_{n-1}}{\sqrt{n}}$ or $\frac{S_{n}}{\sqrt{n-1}}$.
		m1		Condone $\mathrm{z}=$. Correct formula, ignore sign for m 1 . Or $\quad(t=) \frac{0.2343-0.215}{0.014 / \sqrt{6}}$
	$=3.37$ (7)	A1		AWFW 3.31 to 3.41
	Critical value $t_{6}=3.143$	B1		For 6 df (may be implied by 3.14 or 3.71(3.707))
		B1		For 3.14 cao (or -3.14 if test stat < 0)
				Alternative for B1B1 $p=0.00745$ AWFW 0.007 to 0.008 for B1. Comparison of their p with 0.01 B 1
	Reject H_{0} at 1% level. Evidence does support Olga's suspicion OR thickness of shells has increased OR thickness of shells >0.215	E1dep		Requires correct TS and critical t (both positive) OR correct p-value and 0.01 but still requires positive t if seen. Depends on all previous marks. In context
Notes	(i) z test gets B1 B1 M1 m1 A1 B0 B0 A0 for max 5/8 (ii) One sided CI or Decision Interval potentially full marks from $0.216>0.215$ OR $0.233<0.234$ so rej H_{0} (iii) Two-sided test (or CI) gets B0 B1 M1 m1 A1 B1 B0 A0 for max 5/8			
			8	
(b)	Yes, (the suggestion is sensible) because... ...it provides a baseline/control group or thickness may have increased for other reasons.	B1		Requires sensible reason which may not be entirely correct or complete. Just "Yes" is enough. oe Needs idea of comparison, for example: Can then compare with and without crabs. Also award E1 for convincing argument for "No"/"not sensible"
			2	
(c) (i) (ii)	Cannot assume normal distribution.	E1		Mention of non-normality
	Thus, sample size should change/increase	E1		Mention of sample size (not decrease)
	so can then use large sample approximation.	E1		Consideration of approx distribution of test statistic. Allow mention of z - or t test or Central Limit Theorem. Requires consideration of sample size.
			3	

Q	Solution	Marks	Total	Comments
Allow 3dp accuracy for probabilities in this question				
5(a)	Require $P(X>c)<0.01$ using $\lambda=1.6$ From Poisson tables $\begin{aligned} & P(X>3)=1-P(X \leq 3)=1-0.9212=0.0788 \\ & P(X>4)=1-P(X \leq 4)=1-0.9763=0.0237 \\ & P(X>5)=1-P(X \leq 5)=1-0.9940=0.006 \end{aligned}$ This is <0.01 Thus require c $=5$	M1 A1 A1		Needs Poisson and at least $P(X>4)$ and $P(X>5)$ identified (may not be evaluated) Any one correct Poisson probability and comparison with 0.01 5 cwo. Needs 2 correct Poisson probabilities (0.024 and 0.006)
	Alternatively Using the complement, require $P(X \leq c)>0.99$ ($\mathrm{or} \geq 0.99$) Reading directly from Poisson tables $\begin{aligned} & P(X \leq 5)=0.9940>0.99 \text { ? } \\ & P(X \leq 4)=0.9763<0.99 \end{aligned}$	(M1) (A1) (A1)		Needs Poisson and at least $P(X \leq 4)$ and $P(X \leq 5)$ identified Any one correct Poisson probability and comparison with 0.99 5 cwo. Needs 2 correct Poisson probabilities (0.994 and 0.976)

Notes (i) c $=5$ stated with no justification gets $0 / 3$
(ii) No numerical probabilities given $-\mathrm{eg} \mathrm{P}(\mathrm{X}>4)>0.01$ and $\mathrm{P}(\mathrm{X}>5)<0.01$ so $\mathrm{c}=5$ - gets M1A0A0

			3	
(b)	$\begin{aligned} & H_{0}: \lambda=1.6 \\ & H_{1}: \lambda>1.6 \end{aligned}$ Find $P(X \geq 4)$ from Poisson tables $=1-0.9212=0.078(8)$ This is >0.05 so do not reject H_{0}. There is no evidence that the mean or rate of occurrence of air bubbles has increased.	B1 M1 A1 M1 E1dep		For both. Allow μ or "rate". Attempt to calculate $P(X \geq 4)$ or $\begin{aligned} & P(X>4)(=1-0.9763=0.0237) \\ & 0.07 \sim 0.08 \end{aligned}$ Compare their Poisson prob with 0.05 . Correct P -value and 0.05 , including conclusion in context. Must accept H_{0}. Depends on all previous marks.
			5	

		Total	$\mathbf{8}$	

Q	Solution	Marks	Total	Comments
6 (a) (i)	$\mathrm{E}(\mathrm{U})=1.8+1.8+1.8=5.4$			cao
	$\operatorname{Var}(\mathrm{U})=0.07^{2}+0.07^{2}+0.07^{2}=0.0147$			allow 0.015
(ii)	$\mathrm{E}(\mathrm{V})=2.4+2.4=4.8$			cao
	$\operatorname{Var}(\mathrm{V})=0.15^{2}+0.15^{2}=0.045$			cao
(iii)	$E(U+V)=5.4+4.8=10.2$			cao
	$\operatorname{Var}(\mathrm{U}+\mathrm{V})=0.0147+0.045=0.0597$			Allow 0.06
(iv)	$E(U-V)=5.4-4.8=0.6$			cao
	$\operatorname{Var}(\mathrm{U}-\mathrm{V})=0.0147+0.045=0.0597$			Allow 0.06.
		M1		Method for any one mean (may be implied.)
		M1		Method for any one variance (may be implied.) Don’t give if only SDs seen.
		B4		$1 / 2$ mark for each of the above 8 answers. Total rounded down.

Notes (i) Method marks for means are for $3 \times 1.8,2 \times 2.4$, means of (i) + (ii) and (i) - (ii)
(ii) Method marks for variances are for $3 \times 0.07^{2}, 2 \times 0.15^{2}$, vars of (i) + (ii) and same as (iii)

			6	
(b)(i)	Total thickness $\mathrm{T}=\mathrm{U}+\mathrm{V} \sim \mathrm{N}(10.2,0.0597)$	M1		Use of correct normal dist, their mean and variance from (a)(iii)
	$P(T<10)=P\left(Z<\frac{10-10.2}{\sqrt{0.0597}}\right)$	m1		Standardising. Award here or in (b)(ii). Ignore sign.
	$=P(Z<-0.82)$	A1		-0.82~-0.81 (-0.81855)
	$=1-0.79389=0.20611$ from tables	A1		$0.206 \sim 0.208$ calculator $)$
(ii)	Use of $\mathrm{W}=\mathrm{U}-\mathrm{V} \sim \mathrm{N}(0.6,0.0597)$	M1		Use of correct normal dist, their mean and variance from (a)(iv).
	$\begin{aligned} & \text { Require } \mathrm{P}(\mathrm{U}>\mathrm{V})=\mathrm{P}(\mathrm{~W}>0) \\ & P(W>0)=P\left(Z>\frac{0-0.6}{\sqrt{0.0597}}\right) \end{aligned}$	(m1)		Award here if not given in (b)(i)
	$=P(Z>-2.45(6))$	A1		-2.46~-2.44 (-2.455637)
	$=0.99305$ from tables			AWRT 0.993 (0.99297 from calculator)
			7	
(c) (i)	$\begin{aligned} & \mathrm{P}_{1}=[(\mathrm{b})(\mathrm{i})]^{4} \\ & =(0.20611)^{4}=0.0018 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$		Stated or used with their (b)(i). $0.0018 \sim 0.0019$
			2	
(ii)	Expect $p_{2}>p_{1}$ Each biscuit $<10 \mathrm{~mm}$ implies total $<40 \mathrm{~mm}$ But there are other ways of total being less than 40 mm	B1 E1dep E1dep		Requires B1 Requires B1 SC p_{2} is actually 0.0508 . Not required but allow E1 for $0.05 \sim 0.052$ for max 2/3 (B1 E1dep) if no other argument
			3	

Total

