

A-LEVEL Statistics

SS04 Statistics 4 Mark scheme

6380 June 2016

Version 1.0: Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk.

Copyright © 2016 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
Α	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	$H_0: p = 0.1$			
	$H_1: p \neq 0.1$	B1		For both. Or π or in words. Not sample prop or just proportion.
	Under H_0 , the number unable to smell freesias ~ B(20, 0.1)	B1		Binomial distribution with n=20 stated or used to find probability (even if subsequent approximation used).
	Then $P(X \ge 5) = 1-0.9568$	M1		For finding $P(X \ge 5)$ or $P(X > 5)$ from $B(20.0.1)$
	= 0.0432	A1		(0.04(0) ~ 0.045)
	Cannot reject / accept H_0 at the 5% level	m1		Either 0.0432 or 0.0113 compared with 0.025 oe
	No evidence of difference from 10 per cent.	E1dep		Correct conclusion in context. Depends on all previous marks.
Notes	(i) Using $P(X > 5)$ gives $P = 1-0.9897=0.0113$ (0.01 (ii) May compare 0.0568 or 0.0807 with 0.075 for f	$1 \sim 0.012$)	then reje	ct H ₀ for max 4/6 B1B1M1A0m1E0
	(ii) May compare 0.9508 of 0.9897 with 0.975 for (0/0 01 4/0	111ax. DIS	anow mixture which gets max B1B1 2/0
(b)	<i>For example:</i> May be visitors not residents. Under-represents those who don't use the high street or flower shop often. Under-represents those who aren't out in the early morning. Flower-lovers more likely to stop May include blood relatives	E1 E1	0	Oe on 'over-represents' Relevant contextualised reasons based on any two from residence/location/time/interest/genetics Not given for 'small sample'
			2	
		Total	8	

MARK SCHEME – A-LEVEL STATISTICS – SS04 – JUNE 2016

Q	Solution	Marks	Total	Comments
2(a)(i)	No. of hits in 1 minute (X)~Po(4)	M1		Using Poisson here or in (ii)
	P(X = 3) = 0.4335 - 0.2381 $= 0.1954$	A1		Or $P(X=3) = \frac{4^3}{3!}e^{-4}$
			2	0.193 ~ 0.198
(;;)	$P(2 \text{ hits and } 2 \text{ from } UK) = 0.1054 \times r$	M1	4	Their $(a)(i) \times p$ where 0
(11)	$P(5 \text{ mis and } 5 \text{ from } 0 \text{ K}) = 0.1934 \times p$	NI I		Then $(a)(1) \times p$ where 0
	where $p = 0.8^3$	B1		0.8° or 0.512 PI, either alone or in a correct binomial expression or as part of $(a)(i) \times p$
	$= 0.1954 \times 0.512 = 0.1(00028)$	A1		0.099 ~ 0.101
	Alternative No. of hits in 1 minute from the UK (U)~Po(3.2) No. of hits in 1 minute from outside UK			
	(V)~Po(0.8)	(M1)		Either Po(3.2) or Po(0.8) stated or used. PI
	Then $P(U = 3 \text{ and } V = 0) = P(U = 3) \times P(V = 0)$	(B1)		Either 0.222 ~ 0.223 or 0.449 ~ 0.450
	$=0.2226 \times 0.4493 = 0.1(00028)$	(A1)		0.099 ~ 0.101
			3	

Q	Solution	Marks	Total	Comments
2(b)	No. of hits in 1 hour $(Y) \sim Po(240)$	B1		Poisson 240. PI
	which can be approximated by $N(240,240)$	B1		For Normal approximation using their λ
				and $\sqrt{\lambda}$. Disallow $\lambda = 4$
	P(Y>220) = P(Y>220.5) =			
	$P(7 > \frac{220.5 - 240}{2})$	M1		For standardisation using their λ and $\sqrt{\lambda}$
	$\left(\begin{array}{cc} L & \searrow & \sqrt{240} \end{array} \right)$			Disallow $\lambda = 4$ Condone missing/wrong
				CC Ignore sign
				ee. ignore sign.
		Δ1		For completely correct expression
				r or completely correct expression
	= P(Z > -1.26)			
	= 0.89617	A 1		
		AI		AWRI 0.896
Notes	(1) Missing CC gives answers $z = -1.29$ with prob ().900~0.90	J <u>3</u>	
	(11) Wrong CC gives answers $z = -1.32$ with prob ().905~0.9	08 both g	get BIBIMI for max(3/5)
	(111) Exact Poisson(240) gives 0.89/146 for first B1	only		1
()		51	5	
(C)	No. hits from outside UK (W) ~ $B(240, 0.2)$	BI		Or for B(240, 0.8) if $P(W > 200)$ used
				subsequently. Pl
	which is approximately N(48, 38.4)	M1		Normal approximation to binomial stated
				or clearly used.
		AI		Mean = 48 cao (or 192 if $P(W > 200)$
				used), variance = AWRT 38.4 (or SD =
				6.197 AWRT 6.2). May be implied.
		2.01		
	$P(W < 40) = P(Z < \frac{39.5 - 48}{39.5 - 48})$	MI		Standardizing with their mean and SD
	$\sqrt{38.4}$			(allow missing or wrong CC); ignore
				sign
	= P(Z < -1.37(2))	A1		AWRT -1.37 (or $+1.37$ if other tail used)
	= 1 - 0.91466 = 0.08534	A1		0.085 ~ 0.086
	(from tables using $Z = -1.37$)			(more exact value 0.085081)
Notes	(i) No CC gives $Z = -1.29 \& p = 0.0985 (0.098 \sim 0.098)$	99) for ma	1x 4/6	
	(ii) Wrong CC gives $Z = -1.21 \& p = 0.113 (0.11 \sim 0)$.12) for m	ax 4/6	
	(iii) Use of exact B(240, 0.2) gives answer 0. 0826 which is not in range and scores 1/6 if first M1 is not earned			
	(iv) SC Use of Po(48) normal approx., (ie variance	48) gives	Z = -1.23	8 and prob 0.109~0.11 for max 2/6
	(v) Use of exact Po(48) gives answer 0.107 scores	1/6 from f	irst B1 or	ıly.
			6	
r	1	T	1	1
		Total	16	

Q	Solution	Marks	Total	Comments	
3 (a)	$H_0: \mu = 0.215$	B1		Both. Or population mean for μ .	
	$H_{\star}: \mu > 0.215$			Next 4 marks are PI.	
	1 /			For AWPT 0.224 and $\alpha = 0.015$	
	$\overline{r} = 0.2343$ s = 0.01512	B1		$0.016 \text{ or } s_r = AWRT 0.014 \text{ (ignore labels)}$	
	x = 0.2343 = 0.215	DI			
	$(t=) \frac{0.2343 - 0.213}{0.01512 \sqrt{5}}$	M1		M1 for use of $\frac{S_{n-1}}{\sqrt{n}}$ or $\frac{S_n}{\sqrt{n-1}}$.	
	$0.01512/\sqrt{7}$			\sqrt{n} $\sqrt{n-1}$	
		m1		Condone z=.	
		1111		0.2343 - 0.215	
				Or $(t =) \frac{0.2343 + 0.213}{0.014 \sqrt{1/c}}$	
				0.014/ √6	
	- 2 27(7)	A 1		A WEW 2 21 to 2.41	
	= 3.57(7)	R1		For 6 df (may be implied by 3.14 or	
	Crucal value $t_6 = 5.145$	DI		3.71(3.707))	
		B1		For 3.14 cao (or -3.14 if test stat < 0)	
				Alternative for B1B1	
				p = 0.00745 AWFW 0.007 to 0.008 for	
	Reject H _o at 1% level			B1. Comparison of their p with 0.01 B1	
	Evidence does support Olga's suspicion	E1dep		Requires correct TS and critical t (both	
	OR thickness of shells has increased	2100p		positive) OR correct <i>p</i> -value and 0.01 but	
	OR thickness of shells > 0.215			still requires positive t if seen. Depends	
		- /0		on all previous marks. In context	
Notes	s (i) z test gets B1 B1 M1 m1 A1 B0 B0 A0 for max $5/8$ (ii) One sided CL or Desision Interval notartially full marks from 0.216 > 0.215 OB 0.222 < 0.224 so roi IL				
	(iii) Two-sided test (or CI) gets B0 B1 M1 m1 A1 H	31 B0 A0	for max :	5/8	
			8		
(b)					
	Yes, (the suggestion is sensible) because	B1		Requires <i>sensible</i> reason which may not	
				be entirely correct or complete.	
				Just Tes Is enough.	
	it provides a baseline/control group or thickness	E1		oe	
	may have increased for other reasons.			Needs idea of comparison, for example:	
				Can then compare with and without	
				crabs.	
				for "No"/"not sensible"	
			2		
(c) (i)	Cannot assume normal distribution.	E1		Mention of non-normality	
(ii)	Thus, sample size should change/increase	E1		Mention of sample size (not decrease)	
	as on then use longe several se	171		Consideration of annual distribution of	
	so can men use large sample approximation.	EI		test statistic. Allow mention of z- or t-	
				test or Central Limit Theorem. Requires	
				consideration of sample size.	
			2		
		I	3		
		Total	13		

Q	Solution	Marks	Total	Comments
4(a)	Sample proportion $-\frac{8}{3}=\frac{4}{3}=0.114(3)$	B1		Any of these
(1)	70^{-35}	DI		
	Use of $z = 1.6449$	B1		1.64 ~ 1.65. Here OR in part (ii). PI.
	Use of $\frac{(0.1143)(0.8857)}{70}$ (= 0.038)	M1		Their sample proportion and .
	90% CI: $0.1143 \pm 1.6449 \sqrt{\frac{(0.1143)(0.8857)}{70}}$	m1		Their proportion, z and $\sqrt{variance}$
	$= 0.1143 \pm 0.0626$ or (0.0519, 0.1767)	A1		Either form. $0.114 \pm (0.062 \sim 0.063)$ Or (0.051~0.052, 0.176~0.177)
	Alternative (using numbers) Final CI symmetrical about 0.114 $z = (\pm)1.64(49)$	(B1) (B1)		
	Use of $70 \times 0.114 \times 0.886$ (= 7.070)	(M1)		
	$8 \pm (Their z) \times \sqrt{Their \sigma^2}$	(m1)		
	Answer as above	(A1)		
			5	
(ii)	Use of z = 1.6449	(B1)		1.64 ~ 1.65. Only if NOT in part (a). Use of
	90% CI is $0.118 \pm 1.6449 \times \frac{0.019}{\sqrt{70}}$	M1		$\frac{0.019}{\sqrt{70or69}} \ (= 0.0227or0.0229)$
	$= 0.118 \pm 0.0037$ = (0.114, 0.122)	m1 A1		Correct interval, allow any Z or t_{69} or t_{70} Either for 0.118 ± AWRT(0.004) or AWRT 0.114 and 0.122
Note	Using $t = 1.667$ (1.66 ~ 1.67) gives answer in ran	ge for full	marks (B	1) + 3/3
			3	
(b)(i)	CI for RGCB includes 0.09	AF1		ft their CI which must include 0.09. Needs M1m1 in (a)(i) and 0.09 specified.
	So no evidence of a difference (between men and women)	AFdep1		Needs above AF1
(ii)	CI for mean TTF excludes 0.125	AF1		ft their CI which must exclude 0.125 Needs M1m1 in (a)(ii) and 0.125 specified.
	So there is evidence of a difference (between men and women)	AFdep1		Needs above AF1
Notes	 (i)In (b)(ii),iIf direction of difference is referred to, it must be correct for AFdep1 (eg "women have lower mean", "women are quicker" oe) (ii) SC If 4/4 and both conclusions in (b) are too definite, deduct 1 mark 			
			4	
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
		Total	12	

Q	Solution	Marks	Total	Comments
	Allow 3dp accuracy for pr	obabilitie	s in this q	uestion
5(a)	Require $P(X > c) < 0.01$ using $\lambda = 1.6$			
	From Poisson tables			
	$P(X > 3) = 1 - P(X \le 3) = 1 - 0.9212 = 0.0788$			
	$P(X > 4) = 1 - P(X \le 4) = 1 - 0.9763 = 0.0237$			Needs Poisson and at least $P(X > 4)$
	$P(X > 5) = 1 - P(X \le 5) = 1 - 0.9940 = 0.006$	M1		and $P(X > 5)$ identified (may not be evaluated)
	This is < 0.01	A1		Any one correct Poisson probability and comparison with 0.01
	Thus require $c = 5$	A1		5 cwo. Needs 2 correct Poisson probabilities (0.024 and 0.006)
	Alternatively			
	Using the complement , require $P(X \le c) > 0.99$ (or ≥ 0.99)			
	Reading directly from Poisson tables			
	$P(X \le 5) = 0.9940 > 0.99$	(M1)		Needs Poisson and at least $P(X \le A)$
	$P(X \le 4) = 0.9763 < 0.99$	(111)		and $P(X \le 5)$ identified
				and $I(X \ge 5)$ identified
		(A1)		Any one correct Poisson probability and
		(AI)		comparison with 0.99
	c = 5	(A1)		5 cwo. Needs 2 correct Poisson
				probabilities (0.994 and 0.976)
Notes	(i) c =5 stated with no justification gets $0/3$			I
	(ii) No numerical probabilities given – eg P(X	>4)>0.01	and P(X	X>5) <0.01 so c=5 – gets M1A0A0
			3	
(b)	$H_0: \lambda = 1.6$	D 1		
	$H_1: \lambda > 1.6$	BI		For both. Allow μ or "rate".
	Find $P(X \ge 4)$ from Poisson tables	M1		Attempt to calculate $P(X \ge 4)$ or
				P(X > 4) (= 1 - 0.9763 = 0.0237)
	= 1 - 0.9212 = 0.078(8)	A1		0.07 ~ 0.08
	This is > 0.05 so do not reject H_0 . There is no evidence that the mean or rate of occurrence of air bubbles has increased .	M1 E1dep		Compare their Poisson prob with 0.05. Correct P-value and 0.05, including conclusion in context. Must accept H ₀ . Depends on all previous marks.
			5	
1	1	1		1

|--|

Q	Solution	Marks	Total	Comments
6 (a) (i)	E(U) = 1.8 + 1.8 + 1.8 = 5.4			cao
	$Var(U) = 0.07^2 + 0.07^2 + 0.07^2 = 0.0147$			allow 0.015
(11)	E(V) = 2.4 + 2.4 = 4.8			cao
	$Var(V) = 0.15^{2} + 0.15^{2} = 0.045$			cao
(;;;)	E(1 + V) = 5.4 + 4.8 = 10.2			
(11)	E(0 + v) = 5.4 + 4.8 = 10.2 $V_{0r}(U + V) = 0.0147 + 0.045 = 0.0507$			$\Delta 1 \log 0.06$
	Val(0 + V) = 0.0147 + 0.043 = 0.0397			
(iv)	E(U - V) = 54 - 48 = 0.6			cao
. ,	Var(U - V) = 0.0147 + 0.045 = 0.0597			Allow 0.06.
		M1		Method for any one mean (may be
				implied.)
		M1		Method for any one variance (may be
				implied.) Don't give if only SDs seen.
		B4		¹ / ₂ mark for each of the above 8
			<u> </u>	answers. Total rounded down.
Notes	(i) Method marks for means are for 3×1.8 , 2×2	$\frac{1}{2}$, means	$s_{2} \text{ of } (i) + \frac{1}{2}$	(ii) and (i) – (ii)
	(<i>ii</i>) Method marks for variances are for 3×0.07	$, 2 \times 0.15$, vars of	(1) + (11) and same as (111)
(b)(i)			0	Use of correct normal dist their mean
	Total thickness $T = U + V \sim N(10.2, 0.0597)$	M1		and variance from (a)(iii)
	10-102			Standardising Award here or in
	$P(T < 10) = P(Z < \frac{10 - 1002}{\sqrt{0.0507}})$	m1		(h)(ii) Ignore sign
	$\sqrt{0.0397}$	A 1		(0)(1). Ignore sign: (0.92, 0.91, (0.91955)
	-1(Z < -0.02)	AI		$-0.82 \approx -0.81$ (-0.81833) 0.206 - 0.208 (0.20652 from
	=1-0.79389=0.20611 from tables	A1		$(0.200 \approx 0.208)$ (0.20052 from calculator)
(ii)		141		Use of correct normal dist, their mean
	Use of $W = U - V \sim N(0.6, 0.0597)$	MI		and variance from (a)(iv).
	Require $P(U > V) = P(W > 0)$			
	P(W > 0) - P(Z > 0 - 0.6)	(m1)		A word here if not given in $(h)(i)$
	$1 (w > 0) = 1 (2 > \frac{1}{\sqrt{0.0597}})$	(1111)		Award here if not given in (b)(i)
	= P(Z > -2.45(6))	A1		-2.46 ~ -2.44 (-2.455637)
	-0.99305 from tables	Δ 1		AWRT 0.993 (0.99297 from
				calculator)
			7	
(c) (I)	$p_1 = [(b)(1)]^{+}$	M1		Stated or used with their $(b)(i)$.
	= (0.20011) = 0.0018	AI	2	0.0018 ~ 0.0019
<i>(</i> ii)	Expect $p_2 > p_1$	R1		
()	Each biscuit < 10mm implies total < 40mm	E1dep		Requires B1
	But there are other ways of total being less	Elden		Requires B1
	than 40mm	•P		SC p_2 is actually 0.0508. Not
				required but allow E1 for 0.05 ~0.052
				for max 2/3 (B1 E1dep) if no other
				argument
			3	
	1	T -1-1	40	1
		Iotal	18	