

Teacher Support Materials 2009

Statistics GCE

Paper Reference SS03

Copyright © 2009 AQA and its licensors. All rights reserved. Permission to reproduce all copyrighted material has been applied for. In some cases, efforts to contact copyright holders have been unsuccessful and AQA will be happy to rectify any omissions if notified.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX. *Dr Michael Cresswell*, Director General.

A clinical nutrition department at a large hospital carried out research into the levels of body fat in females.

The age, *x* years, and the body fat, *y* per cent, for each of 10 randomly selected females are given in the table.

Fomolo		
remaie	X	У
Α	23	27.9
В	39	31.4
С	41	25.9
D	49	25.2
E	53	34.7
F	56	32.5
G	57	30.3
Н	58	33.0
I	60	41.1
J	61	34.5

(a) Calculate the value of Spearman's rank correlation coefficient between *x* and *y*.

(6 marks)

(b) Carry out a hypothesis test, at the 10% level of significance, to determine whether the value you calculated in part (a) indicates an association between *x* and *y*.

Interpret your conclusion in context.

(4 marks)

$ \begin{array}{c cccc} \hline 0 & \hline 0 & \hline A & 1 \\ \hline B & 2 \\ \hline C & 3 \\ \hline D & 4 \\ \hline \end{array} $	$ \begin{array}{c} $
F 6 F 6	
H 8 I 9	
2 10	
6 Ho fs	= 0 $H_1 g \neq 0$ two tail test
9 - 99	$\frac{n=10}{2}$
0.6727 Tha	>0.5636
regic	n, Ho is rejected,
end os	lence to shaw that there is (9) sociation between x and y
	ED Context

Commentary

Students who showed the ranks tended to gain full marks in part (a). In part (b) some students lost marks because their conclusion was not given in context i.e. did not refer to age and body fat.

Q	Solutions		Marks	Total	Comments
1(a)					
	Rank x	Rank y	M1		attempt at ranks inconsistent
	10	8	MI		(can be reversed) SC MIMI B2
	9	6	IVII		for 16 correct
	8	9	Δ1		loi lo conect
	7	10			
	6	2			
	5	5			
	4	7			
	3	4			
	2	1			
	1	3			
	$r_s = 0.673 (3 \text{ sf from})$	n cale)	B3	6	AWRT B2 0.67 B1 0.7 ft B2 from wrong ranks (small slip) No ranks seen, SC 0.67 B4 0.7 B3
					alternative d = 2, 3, 1, 3, 4,, 3, 1, 1, 2 $\sum d^2 = 54$ B1 $r_s = 1 - \frac{6 \times 54}{10 \times 99} = 0.673$ M1, A1
(b)	H _o Rank orders of body fat in females H ₁ Rank orders of a	age and percentage are independent. age and percentage	B1		or equivalent
	body fat in females there is an associati 2 tail 10%	are not independent – on			
	$ev = \pm 0.5636$ n =	- 10	B1		for ev
	test stat $r_s = 0.673$ $r_s > 0.5636$		M1		for comparison ts/cv SC Allow M1 0.593/0.5494
	Reject H _o . Signific	ant evidence at 10%			(pince)
	level to suggest an	association between			
	rank orders of age a fat in females.(or p	and percentage body ositive association)	E1	4	correct and in context
		Total		10	

Student Response

is 9 minutes.								
H1 averas	je time	taken to	complete the task					
is area	uter than	9 minu	ites					
<i>ب</i>			B)					
one-tayled test	at a sign	ificance	level of 5%					
Differences	+ve	I -Ve.						
0.5	Δ							
-0.1		2						
0.2	a							
0.0	55		m1, m					
0.6		1						
-0.1	7							
0. 1								
-0.6		5.5						
0.8 (<u>×</u>	T- (2 T	iml					
V	1=26.5	1=8.5						
100 - 10 - 10 - 10 - 10 - 10 - 10 - 10	AL	<u> </u>	l					

SS03

Commentary

Candidates who showed ranks and method gained marks if an arithmetic error occurred. In part (b) the relevant points were that the sample was randomly selected or that the data should be symmetrically distributed.

Q	Solutions	Marks	Total	Comments
2.(a)	H _o pop median/mean η , $\mu = 9$ H ₁ pop median/mean η , $\mu > 9$ 1 tail 5% (d is result - 9)	B1		
	diff 0.5 0.2 0.6 -0.1 rank 4 -3 2 5½ -1	М1		For differences (result -9) - ignore signs
	diff 0.7 0.8	ml		For ranks
	-0.6 rank 7 -5½ 8	M1		For ties
	$T_{+} = 4 + 2 + \dots + 8 = 26^{1/2}$ $T_{-} = 3 + 1 + 5^{1/2} = 9^{1/2}$	m1 A1		For total attempted from ranks For one correct total
	Test stat $T = 9\frac{1}{2}$ $n = 8$ 1 tail 5% ev = 6 T > 6	B1 M1		For ev Comparison ev/ts (consistent)
	No significant evidence at 5% level to reject H_o . Conclude that there is no significant evidence to suggest that the average time to complete the task is greater than 9 minutes.	E1	9	In context
(b)	Sample was selected at random.			
	or Times to complete the task are symmetrically distributed.	B1	1	Disallow 'normally distributed'
	Total		10	

A coin expert carries out an analysis to determine the percentage of silver in coins taken from two separate coin mintings during the reign of King Manuel I. The percentages for the coins in a sample from each minting are given in the table.

First Minting	5.8	6.6	6.3	6.9	7.5	7.0	6.7	6.1
Second Minting	6.7	8.8	6.5	8.2	9.4	9.1	8.4	

Carry out a distribution-free test to investigate the claim that coins from the second minting contain a higher percentage of silver than those from the first minting. Use the 5% level of significance and assume each sample to be random. (10 marks)

Student Response

Commentary

Candidates who showed no ranks and/or method on the answer paper lost most of the marks

Q	Solutions	Marks	Total	Comments
3	H _o Samples are taken from identical populations H ₁ Samples are not taken from identical	B1		or equivalent in words implying pop averages same/ 2 nd greater
	populations – population average percentage silver higher in second minting. 5% 1 tail	B1		
	Ranks First Second			(Alternative method acceptable)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1		Attempt at M-Whitney – ranks as one group (can be reversed)
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ml		Ties
	$T_{1st} = 44^{1/2} \qquad T_{2nd} = 75^{-1/2} m = 8 \qquad n = 7$	m1		For total attempt
	$U_{1st} = 44\frac{1}{2} - \frac{8\times9}{2} = 8\frac{1}{2}$			
	$U_{2nd} = 75\frac{1}{2} - \frac{7\times8}{2} = 47\frac{1}{2}$	ml		For U formula correct
	Test stat U = $8\frac{1}{2}$	A1		Either U correct
	cv = 13 $n = 7$ $m = 8$ 1 tail 5%	B1		correct/relevant cv used
	$U = 8\frac{1}{2} < 13$	M1		comparison with U (consistent)
	Significant evidence to reject H _o and conclude that the percentage of silver was			
	higher in the second minting.	A1	10	
	Total		10	

An eye clinic treats a large number of adult patients who have one normal eye but suffer from glaucoma in the other eye. The thickness, in microns, of the cornea of each eye was measured for each of a random sample of 8 such patients. The results are given in the table.

Patient	1	2	3	4	5	6	7	8
Normal eye	488	478	492	444	436	398	464	476
Eye with glaucoma	484	478	480	426	440	410	458	460

(a) Carry out a sign test, at the 10% level of significance, to investigate whether there is any difference in the average cornea thickness between the normal eye and the eye with glaucoma. *(6 marks)*

(b) Later it was discovered that the measurements from 5 other randomly selected adult patients had been lost. However, it is known that all 5 patients had a lower cornea thickness in the eye with glaucoma than in the normal eye.

Use this additional information, together with the information given in the table, to carry out a sign test, at the 5% level of significance, to investigate whether there is evidence that the average cornea thickness of the normal eye is greater than that of the eye with glaucoma. (5 marks)

Student Response

	a) to population medican difference = (Ubrund-glamong)
	two tuiled test
	201. significance level
	Pariaux 1 2 2 4 5 6 7 8 4 4 5
	$\bigvee ((((((((((((((((((($
	TNB(703)
	P(x > 5) = 1 - P(x + y) = 1 - 0.7734
	= 0.2266 -> LEST STUHSHIC
	Critical negion < Critical value
	0.2266 6 3 44 44 00 00
-	

SS03

Value not in critical negicar. So accept 6 evidence at Significant NO significance leve udica te avu di A OUPLOUP etwedu erence COMPU LICOMO Leave blank : population medicon difference = 0 population modius difference (Domestic glavan halin Lesh one significance level SY. * Patients 345678910111213 9 - 4 + 2~B(1205 $F(z>10) = 1 - P(z \neq q)$ = 1 - 0.9807= 0.0143 test stutistic w) critical negion & critica Lest statistic 50.05 neyion Reject 240. Witica evidence at a 5%. Significance Significant the average conten that eye is ynearer than with glancouce.

Commentary

Few candidates managed the two sign test but several produced excellent solutions identifying the tests stat and comparing it to the correct probability for the Binomial distribution. Good candidates realised that the zero should be excluded so B(7, 0.5) should be used.

In part (b), many candidates correctly added 5 to their test value thus obtaining n = 12 and compared the relevant B(12, 0.5) probability to 0.05.

Q	Solutions	Marks	Total	Comments
4(a)	$H_0 \eta_d = 0$	B1		
	$H_1 \eta_d \neq 0$ 2 tail 10%			
	Signs +.++ + +	M1		Signs (allow signed differences)
	$5^+/2^-$ signs – test values	A1		test stat correct and identified
	Binomial (7, 0.5) model	M1		Binomial model used and
	$\begin{split} P(\geq 5 +) &= P(\leq 2 \text{ -}) = 0.227 > 0.05 \text{ or} \\ P(\geq 5 +) &= P(\leq 2 \text{ -}) = 0.453 > 0.10 \end{split}$	ml		Comparison of Binomial probability with 0.05 (or 0.1)
	Accept H			Identified correct critical region with probability given also M1m1
	There is not sufficient evidence, at the 10% level, to suggest that the average cornea thickness differs between the normal eye and the eye with glaucoma.	E1	6	Interpretation in context
4(b)	$H_0 \eta_d = 0$			
	$H_1 \eta_d > 0$ 1 tail 5%	B1		One tail – either way if consistent
	10 ⁺ /2 ⁻ signs – test values Binomial (12, 0.5) model	B1		test stat identified ft incorrect ts from (a)
	$P(\ge 10 +) = P(\le 2 -) = 0.0193 < 0.05$	M1		Binomial model used and
	one tail test	ml		Comparison of Binomial probability with 0.05
	Reject H _o .			Identified correct critical region with probability given also M1m1
	There is sufficient evidence, at the 5%			SC $n = 8$ in part(a)
	thickness is greater for the normal eye	A1	5	Allow part(b) <i>n</i> =13 M1, M1 for 0.0112 < 0.05
	than for the eye with glaucoma.		11	
	Lotal		11	

A factory has four identical machines, A, B, C and D, that produce bottle caps. The production manager believes that there are some differences between the average daily outputs of the machines. In order to investigate his belief he decides to select one of the machines at random on each of 21 days and record the number of bottle caps it produces during the day.

The **rank values** of the results are given in the table. A rank value of 1 indicates the lowest production.

Machine A	Machine B	Machine C	Machine D
21/2	15	1	8
5	16	21⁄2	9
10	18	4	11
14	20	6	12
17	21	7	13
19			

(a) Carry out a Kruskal-Wallis test, using the 1% significance level, to investigate whether there is any difference between the average daily number of bottle caps produced by the four machines. (12 marks)

(b) The maintenance engineer at the factory has money available to replace one of the four machines.

Identify, with a reason, which machine you would advise him to replace. (2 marks)

Leave a) Ho: No difference between the average daily (mans of) 5 blank numbers of bottle caps produced by the far multing H1: There is difference between at heast two of the averye daily (ranks of) numbers of bottle caps proticed by the four mehined. TA= 67.5 TB = 40 TC = 20.5 TP= 53 V 67.52 (10.5)2 L+ H= 12 + (90) 21 (22) 6 = 12,577 / 1% sig. level two tailed CV=4-3+3 degrees of freedom = 3 11.345 6 12,577 Ho rejected. 12 We have sig. evidence that there is difference abat leage two of the average daily (rome of) negotiers ttle caps produced by the for natives. 5 Machine (since it has the lovest ranks of the how therefore is see this it dogn't produce the anone Acedal and experied. It produces a lot less than the other 3.

Commentary

Candidates who referred to population averages or average daily numbers of bottle caps needed to mention a difference of 'at least 2' in their H_1 . Many correct attempts were seen this session on the Kruskal-Wallis test . Most candidates identified machine C as having the lowest production.

Q	Solutions	Marks	Total	Comments
5(a)	Ho Samples are taken from identical	B1		or
	populations			$H_0 \eta_A = \eta_B = \eta_C = \eta_D$
	H ₁ Samples are not taken from identical	D 1		
	populations – population average bottle	BI		H ₁ at least two of
	tail 1%			$\eta_{A}, \eta_{B}, \eta_{C}, \eta_{D}$ do differ
	1 (411 1/0			
	Ranks			
	Machine Machine Machine			
	A B C D			
	$2\frac{1}{2}$ 15 1 8			
	5 16 $2\frac{1}{2}$ 9			
	10 18 4 11 14 20 6 12			
	17 20 0 12 13			
	19			
		М1		
	$T_A = 67\frac{1}{2} T_B = 90 T_C = 20\frac{1}{2} T_D = 53$	1411		Totals
	$n_{A} = 6$ $n_{B} = 5$ $n_{C} = 5$ $n_{D} = 5$			
				T^{2}
	$-\frac{m}{2}T_i^2$ 67.5 ² 90 ² 20.5 ² 53 ²	1		$\sum_{i=1}^{m} \frac{I_i}{I_i}$
	$\sum_{i=1}^{n} \frac{1}{n_i} = \frac{1}{6} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5}$	mı		Method for $\sum_{i=1}^{n} n_i$
		m1		
	= 3025.225			n _i correct
	$H = \frac{12}{3025,225} \times (3 \times 22)$			
	21×22	1111		test stat H
	- 12.59			
	- 12.58	AI		12.3 – 12.9
	Critical value from $\chi_3^2 = 11.345$	B1		3 df
	H > 11.345	B1		cv
		M1		comparison cv/ts
	Sig evidence to reject H ₀ and conclude	Δ1		
	that samples are not from identical	AI		
	populations			
	Significant evidence at the 1% level to			
	suggest that the population average bottle			Difference in context
	cap productions differ for the 4 machines.	E1	12	Mention of 'at least two'
	At least two machines have different			
	averages			
ക	Machine C had the lowest average rank			
(u)	score so it would seem likely that machine			
	C is the lowest producer of bottle caps and	B1		Machine C
	therefore this machine is the most obvious	E1		Descent suffer to the location
	one to suggest for replacement	EI	2	Reason – must refer to the lowest average
	Total		14	score or lowest production

Question 6(a)

An Institute for Health and Welfare carried out an investigation into ladder-related falls during 2004/05.

(a) The place of occurrence of the fall and the sex of the person who fell were recorded and the results are summarized in **Table 1**.

Sex Place of occurrence of fall	Male	Female	Total
Home	1269	393	1662
School, other institution or sport area	35	5	40
Trade or service area	76	16	92
Industrial or construction area	156	6	162
Farm	31	6	37
Total	1567	426	1993

Table 1

(i) Test, at the 1% level of significance, whether the place of occurrence of a fall is independent of the sex of the person who falls. (10 marks)

- (ii) By comparing observed and expected frequencies, identify, in context, **two** important facts. (2 marks)
- (iii) Make one further general statement regarding the observed frequencies in **Table 1**. (1 mark)

SS03

Student Response

Leave blank Ho: place of accurrence of a field is independent 6) of sex H, : the place of occurance of a fell is not independents of the 16 sign level. Elefet daes: Mete Horas Sportface Expected values: Male Female 355 1307 Home School/spaltara 9 31 72 20 Trade beince area manstria (const. 127 35 3 faim 29 AD X $+s = \sum \left(\frac{2}{2} - \frac{1}{2}\right)^{2} = 39.8$ MI AI impled CV= 13.277 +S7CV 1 9 Reject the there is significant evidence to assume that the place of the fell is not independent of the sex of the person who fell

female folls for values (ii) The expected where ~ 6 Surge do 125 two she ane male LOW fels Also were more б industrial and construction. cines -1 ion m female folls 5 burles 2004/05 Hune 10 Ciii) males where more Selling GOM loders aper tran anu 10 đ women. Q

Commentary

Expected values should be given to at least 1 dp or marks will be lost. In part (a) (ii) reference to the comparison of expected and observed frequencies is essential and marks will not be gained otherwise. In part (a) (iii) any comment on the observed frequencies is acceptable.

Q	Solutions			Marks	Total	Comments
δ(a)(i)	 H_o No association between place of occurrence of fall and sex of person who falls. H₁ Association exists between place of occurrence of fall and sex of person who falls. 			B1		
	1 tail 1%					
	Expected freqs	Male	Female	M1		For method for E
	Home	1306.75	355.25	ml		for 3 correct
	School, other	31.45	8.55			
	Trade and serv	72.34	19.66			All correct (1dp required minimum
	Industrial etc	127.37	34.63	AI		except 1307/355)
	Farm	29.09	7.91			
	$ts = \sum \frac{(O-E)^2}{E}$ $= \frac{(1269 - 1306.75)}{1306.75}$ $\dots + \frac{(6 - 7)^2}{7}$	$(\frac{1.75}{1.91})^2 + \frac{(39)}{(1.91)^2}$	$\frac{3-355.25)^2}{355.25}$	ml		ts sum with correct denominators
	= 38.5			A1		for ts in range 34 - 43
	df=4 1% c	v = 13.277		B1		for $df = 4$
				B1		for ev
	ts > 13.277			mi		for comparison ts/ev
	Significant evide conclude that the between place o sex of person wi	ence to reje ere is an as f occurrenc ho falls.	ect H _o and sociation se of fall and	A1		
					10	
(ii)	Far fewer than e ladder-related fa Construction are	expected fer alls in the In the and far n	males have ndustrial or nore males than	E1		Any two points made
	More females w at home than wo	e rans in th ere observe ould be exp	ed to have falls ected.	E1	2	
6(a)(iii)	Many more male related falls than Most falls occurr	es involved females. red at home	in ladder- e.	E1	1	Any one point made

The number of patients admitted to hospital during 2004/05 for the three admission categories involving ladder-related falls for males and for females was also recorded. The results are summarized in **Table 2**.

Table 2				
Sex Admission category	Male	Female		
Direct ladder-related fall	62.1%	50.9%		
Transfer following ladder-related fall	12.3%	10.5%		
Other incident also involving fall from ladder	25.6%	38.6%		
Total admissions	227	57		

(i) Use the information in **Table 2** to construct a contingency table with frequencies that could be analysed to investigate whether there is an association between admission category and the sex of the person who falls. (*3 marks*)

(ii) For the contingency table in part (b)(i), the value of $\sum \frac{(O-E)^2}{E}$ is 3.83, correct to 3 significant figures.

Test, at the 5% level of significance, whether admission category is independent of the sex of the person who falls. (4 marks)

SS03

Student Response

6	F)))			Leave blank			
v	Ad missing Callony Sex	Nale	Female	Tota			
	Direce ladder release full	140.967	29.013	61,98			
	Transfer following bedden retray to 11	27-921	5-985	33.906			
	Other incident also making helder	58.112	22.002	80,114 2			
	Total admissions.	227	57//	284			
			Ao	J			
	11) to independent of	Ser 1%	styr burl.				
	Hi not interpendent of	sex	1				
	SI						
	dear of Freiter = (3-1)(2-1) = 2						
	$5 (0-E)^{1} = 3.84$						
	E						
	(1,1) $(1,2)$ $(2,2$						
	Widert Value = T. 2 10 DU IVII						
	T And A A A A A A A A A A A A A A A A A A						
	lege succession to bes you exceed actival value so flore						
	is no endence to doubt the ord we conclude that the admission						
	autypay callegory is independent of the sex of the person who to to						

Commentary

In part (i) frequencies that are observed should be given as integers or marks will be lost.

(b)(i)		Male	Female	M1		% of 227 or
	Direct	141	29			% of 57
	Transfer	28	6			
	Other	58	22	m1		4 correct (not necessarily integers)
				A1	3	all correct and integers
(ii)	H_o No association between admission category and sex of person who falls. H_1 Association exists between admission category and sex of person who falls. ts = 3.84 df = 2 5% cv = 5.991		B1			
			B1			
	3.84 < 5.991 reject H _o Co	No signific nclude that t	ant evidence to here is no	M1		
	evidence of a admission ca falls.	association b tegory and s	etween ex of person who	A1	4	