

# Teacher Support Materials 2008

# Maths GCE

# Paper Reference SSO3

Copyright © 2008 AQA and its licensors. All rights reserved. Permission to reproduce all copyrighted material has been applied for. In some cases, efforts to contact copyright holders have been unsuccessful and AQA will be happy to rectify any omissions if notified.

# **SS03**

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX. *Dr Michael Cresswell*, Director General.

#### **Question 1**

A manufacturer of an electrical appliance wants to adjust one of the components used in the appliance. The effect that the adjustment would have on the resistance of the component is investigated.

The manufacturer selects, at random, 8 components. Each component has its resistance, in ohms, measured before and after the adjustment.

The results of the investigation are shown in the table.

| Component | Α  | В  | С  | D  | Ε  | F  | G  | Н  |
|-----------|----|----|----|----|----|----|----|----|
| Before    | 38 | 42 | 44 | 35 | 44 | 36 | 44 | 42 |
| After     | 41 | 49 | 42 | 40 | 43 | 40 | 46 | 50 |

(a) Carry out a Wilcoxon signed-rank test, at the 5% significance level, to investigate whether or not the average resistance of the component is changed by the adjustment. Interpret your conclusion in context.

(9 marks)

(b) (i) Give **one** reason why a Wilcoxon signed-rank test might be preferred to a sign test in carrying out an investigation similar to the one carried out in part (a).

(1 mark)

(ii) Describe **one** situation in which it would **not** be possible to carry out a Wilcoxon signed-rank test but it would be possible to carry out a sign test.

(2 marks)

# **SS03**

| lQ. | Ho-Population Median = 0                                                        |
|-----|---------------------------------------------------------------------------------|
|     | H Population redian 70 (before - after)<br>2 tailed test at 5% (before - after) |
|     | ronk<br>+ / =                                                                   |
|     | -3 4                                                                            |
|     | 2 2.5                                                                           |
|     |                                                                                 |
|     | -4 5                                                                            |
|     | -8 8                                                                            |
|     | total = 32.5                                                                    |
|     | total + = 3.5                                                                   |
|     | test statistic = 3.S.                                                           |
| 1   | Critical value = 4.                                                             |
|     | Lest statistic < 4                                                              |
|     | Applation Median obes not = 0 and that there                                    |
|     | is a difference between the two before and affer                                |
| -   | Testoane.                                                                       |
| b   | 1) & More depth.                                                                |
|     | ) If the data was not numerical, it would                                       |
| Ĺ   | i la marila la rise a wilcoror signed                                           |

# **SS03**

Many candidates made a very good effort at this question and the majority showed the differences between pairs of values and the rank values used. Several incorrectly ranked -8 with rank 1. Candidates should understand the difference with the smallest absolute value is assigned rank 1.

Hypotheses were usually correctly stated and conclusions were generally fairly well done and in context. The solution shown for part (a) gained full marks and is clearly laid out. In part (b) (i) most candidates had a good idea of the required comment but many did not express themselves clearly enough to gain the mark.

In part (b) (ii) there were some excellent solutions with clear examples given but many candidates gained only 1 mark as they were not specific enough in their explanation. This candidate did not clearly express the reason or give an example.

| <b>1(a)</b>   | $H_o$ pop median/mean diff $\eta_d = 0$                                    | B1         |   |                                      |
|---------------|----------------------------------------------------------------------------|------------|---|--------------------------------------|
|               | H <sub>1</sub> pop median/mean diff $\eta_d \neq 0$                        |            |   |                                      |
|               | 1 tail 5% ( $d$ is after – before )                                        |            |   | For differences (before–after)       |
|               | diff 3 7 -2 5 -1                                                           | <b>M</b> 1 |   | or (after - before) - ignore         |
|               | <b>rank</b> 4 7 -2 <sup>1</sup> / <sub>2</sub> 6 -1                        |            |   | signs                                |
|               |                                                                            | <b>M</b> 1 |   | For ranks                            |
|               |                                                                            | m1         |   | For ties                             |
|               | rank 5 2½ 8                                                                |            |   |                                      |
|               | $T_{+} = 3 + 7 + \dots + 8 = 32\frac{1}{2}$                                | m1         |   | For total attempted                  |
|               | $1_{-}=2\frac{1}{2}+1=3\frac{1}{2}$                                        | A1         |   | For one correct total                |
|               | Test stat $T = 3\frac{1}{2}$ $n = 8$ 1 tail 5%                             | 111        |   |                                      |
|               | n = 8 cv = 4                                                               | B1         |   | For cv                               |
|               | 1 < 4                                                                      | MI         |   | Comparison cv/ts                     |
|               |                                                                            |            |   |                                      |
|               | Significant evidence at 5% level to reject H and conclude that the average | <b>E</b> 1 |   | In contact                           |
|               | resistance differs after the adjustment                                    | EI         |   | III context                          |
|               | ( higher)                                                                  |            | _ |                                      |
| (b)(i)        | Wilcoxon signed rank test takes into                                       |            | 9 |                                      |
| (0)(1)        | account the magnitude of the                                               | E1         |   |                                      |
|               | differences not simply whether they are                                    |            | 1 |                                      |
|               | + OF –                                                                     |            |   |                                      |
| ( <b>ii</b> ) | When the data is not symmetrically                                         |            |   |                                      |
|               | distributed so Wilcoxon signed-rank                                        | 54         |   | ~                                    |
|               | cannot de carried out.                                                     | BI<br>E1   |   | Correct reasoning and explained well |
|               | Data given only as signs/preferences so                                    |            | 2 | enplumed wen                         |
|               | only sign test possible – no numerical                                     |            |   |                                      |
|               | differences can be evaluated                                               |            |   |                                      |

#### **Question 2**

. A road safety organisation obtained the annual number of road deaths, x per 100 000 of the population, and the number of motor vehicles, y per 1000 of the population, for countries in the EU.

The table gives the results for a random sample of 10 countries in the EU.

| Country | Α   | В   | С   | D   | Ε   | F    | G    | Η    | Ι    | J    |
|---------|-----|-----|-----|-----|-----|------|------|------|------|------|
| x       | 5.9 | 6.1 | 6.3 | 8.0 | 8.4 | 10.2 | 10.5 | 12.8 | 14.8 | 19.3 |
| у       | 559 | 528 | 518 | 650 | 487 | 607  | 754  | 597  | 496  | 480  |

(a) Calculate the value of Spearman's rank correlation coefficient between *x* and *y*.

marks)

(b) Carry out a hypothesis test, at the 10% level of significance, to determine whether the value you calculated in part (a) indicates an association between the annual number of road deaths per 100,000 of the population and the number of motor vehicles per 1,000 of the population for countries in the EU.

(5 marks)

(6

|    | van          | c       | un, up,   |                                          |                 |                      |             |
|----|--------------|---------|-----------|------------------------------------------|-----------------|----------------------|-------------|
|    | (Concession) | r,      | C2        | d                                        | d²              | 31462                | and a state |
| Za | A            | 1       | 6         | -5                                       | 25              | acert .              | 1           |
|    | B            | Z       | 5         | -3                                       | 9               | (152. X 18 )         | 1 - 194     |
|    | C            | 3       | 4         | -1                                       | 5 <b>31</b> - 5 | 5 1 au <sup>2*</sup> | а           |
|    | b            | 4       | 9         | -5                                       | 25              |                      | 5-6-2       |
|    | E            | 5       | 2         | 3                                        | 9               | Topola               | 2010        |
|    | F            | 6       | 8         | -2                                       | 4               | 1 1 1 6 5 5 1        | 100         |
|    | 05           | 7       | . 10      | -3                                       | 9               |                      | < 5         |
|    | H            | 8       | 7         | s - 3 1                                  | l               | 345.52               |             |
|    | I            | ч       | 3         | 6                                        | 36              | and water to         | Sec. 4      |
|    | J            | 10      | 1         | 9                                        | 81              | anthe TVT T          | in the      |
|    |              | mini    | 5 10/07   | = 0                                      | 200             | ALL LOS YEAR         | 60 m        |
|    | Hory         | 720     | \$ r.=    | 1- 6Ed2                                  | 1 = 1.          | 64200                | = 1 - 1.21  |
|    | An           | 2 :     | - 0.21    | 2/2/                                     |                 | 10 5 (10 3-1)        |             |
|    |              |         |           | 1                                        |                 | 4-2                  |             |
| 5  | Ho:          | 0=0     | / _       |                                          |                 |                      | 1           |
|    | H.:          | Pto 6   | two tail  | ed tast                                  | 00=0            | 2.10                 |             |
|    | C. U :       | :0.60   | IST BO    | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | xt t            | +                    | +           |
|    | -0           | .21217  | -2.8485 N | NO Dan                                   | : + :           | -                    |             |
|    | acce         | ot Ha   | reject 6  | I, K                                     | 2               | a human to all       | 10 10 1     |
|    | no si        | ani fic | arterido  | nce at u                                 | in the          | T DED                | a hant      |
|    | there        | is not  | encrucho  | midence                                  | ta sa           | that the             | 10 1. 0     |
|    | ossosi       | ation   | between   | num ber                                  | ch coo          | deaths               | curd -      |
|    | ct w         | oter.   | repicter. |                                          | 1 100           | El                   | A           |
|    | BLATT        |         |           | Ren Bar                                  | Leuters         | EL                   | N           |
|    | 1.10         |         |           |                                          |                 |                      |             |
|    |              |         |           |                                          |                 |                      |             |
|    |              |         |           |                                          |                 |                      |             |

Part (a) was answered correctly by many candidates but a significant number found the product moment correlation coefficient in error. Some candidates successfully obtained the coefficient from a calculator but many detailed the use of the formula. Ranks were generally quoted thus gaining method marks even if the final answer was incorrect. The candidate shown gave all ranks and method and gained full marks.

In part (b), the critical value was usually quoted correctly but often candidates compared a negative correlation coefficient with the positive critical value. This candidate obtained an incorrect critical value although a comparison between a negative ts with a negative cv was made.

Conclusions were often wrong indicating a lack of understanding of the critical region. The conclusion in context stated often did not make sense, for example "road deaths are not associated with cars". This candidate displays excellent wording for the conclusion in context.

| <b>2.</b> (a) |                                                                                  |      |   |                                                           |
|---------------|----------------------------------------------------------------------------------|------|---|-----------------------------------------------------------|
|               | Country     A     B     C     D     E       x ronk     1     2     2     4     5 |      |   | attempt at ranks                                          |
|               | x  rank = 1  2  3  4  5                                                          | M1   |   | (can be reversed)                                         |
|               | Y Tank     0     5     4     9     2       Country     F     G     H     I     J | M1   |   | for 16 correct                                            |
|               | $x \operatorname{rank} 6 7 8 9 10$                                               | 1011 |   | for to contect                                            |
|               | yrank 8 10 7 3 1                                                                 | A1   |   |                                                           |
|               |                                                                                  |      |   | alternative                                               |
|               |                                                                                  |      |   | <i>d</i> = 5, 3, 1, 5, 3, 2, 3, 1, 6, 9                   |
|               |                                                                                  |      |   | $\sum d^2 = 200 \qquad \qquad B1$                         |
|               | r = -0.212(3  sf from calc)                                                      |      |   | 6×200                                                     |
|               | $r_{s}^{2} = 0.212(3.51 \text{ Hom cale})$                                       | B3   |   | $r_s = 1 - \frac{10 \times 99}{10 \times 99} = 1 - 1.212$ |
|               |                                                                                  |      |   |                                                           |
|               |                                                                                  |      | 6 | = - 0.212 M1, A1                                          |
|               |                                                                                  |      |   |                                                           |
| (b)           |                                                                                  |      |   |                                                           |
| (U)           | $H_0$ Rank orders of annual road deaths                                          |      |   |                                                           |
|               | and number of motor vehicles are                                                 | B1   |   | or alternatives                                           |
|               | independent.                                                                     |      |   | H <sub>o</sub> No association                             |
|               | U. Donk orders of annual road deaths                                             |      |   | H <sub>1</sub> Association                                |
|               | $H_1$ Rank orders of annual road deams<br>and number of motor vehicles are not   |      |   |                                                           |
|               | independent – there is an association                                            |      |   |                                                           |
|               | •                                                                                |      |   |                                                           |
|               | 2 tail 10%                                                                       |      |   |                                                           |
|               | $cy = \pm 0.5636$ $n = 10.2$ tail 10%                                            | D1   |   |                                                           |
|               | $ev = \pm 0.5650$ $n = 10.2$ tail 10/0                                           | DI   |   |                                                           |
|               | test stat $r_s = -0.212$                                                         |      |   |                                                           |
|               | $r_{s} > -0.5636$                                                                | M1   |   | for cv                                                    |
|               | Accept H No significant evidence at                                              |      |   |                                                           |
|               | 10% level to suggest an association                                              | A1   |   | for comparison ts/cv                                      |
|               | between rank orders of annual road                                               |      |   | $r_s = 0.212 / cv = 0.5636$                               |
|               | deaths and number of motor vehicles                                              | E1   | 5 | $r_s = -0.212 / cv = -0.5636$                             |
|               | for countries in the EU                                                          |      |   |                                                           |
|               |                                                                                  |      |   |                                                           |

#### **Question 3**

. (a) A long term trial was carried out into the effectiveness of giving accident victims with serious head traumas a steroid drug in addition to other treatments. In the trial, 1061 victims were randomly assigned to be given the steroid drug and the remainder were given a drug with no active ingredient (a placebo).

The victims either died as a result of their injuries or survived.

The results of the trial are summarised in Table 1.

| Table 1  | Additional tr<br>giver |         |       |
|----------|------------------------|---------|-------|
| Outcome  | Steroid<br>Drug        | Placebo | Total |
| Died     | 396                    | 422     | 818   |
| Survived | 665                    | 665     | 1330  |

Carry out a test, using the 5% level of significance, to investigate whether the survival of accident victims with serious head traumas is independent of the additional treatment given.

(10 marks)
 (b) A trial was carried out into the effectiveness of a new anaesthetic drug. A sample of 500 patients undergoing a minor operation volunteered for the trial. Of these patients, 250 were randomly assigned to be given the standard anaesthetic drug and the remaining 250 were given the new anaesthetic drug.

The level of consciousness of each patient, 30 minutes after the operation was completed, was recorded as unconscious, semi-conscious or fully conscious. The **percentages** of patients in these levels of consciousness, for those given the standard anaesthetic drug and for those given the new anaesthetic drug are shown in Table 2.

| Table 2                   | Anaesthetic drug used    |                     |  |  |  |  |  |
|---------------------------|--------------------------|---------------------|--|--|--|--|--|
| Level of<br>Consciousness | Standard<br>(percentage) | New<br>(percentage) |  |  |  |  |  |
| Unconscious               | 52                       | 36                  |  |  |  |  |  |
| Semi-conscious            | 36                       | 46                  |  |  |  |  |  |
| Fully conscious           | 12                       | 18                  |  |  |  |  |  |

(i) Using the 1% level of significance, carry out a  $\chi^2$  test for association between the drug used and the level of consciousness 30 minutes after the operation was completed.

(10 marks)

(ii) Interpret your conclusion in part (a)(i) in the context of the question.

(2 marks)

| 300 | Ho = Sur    | vival of vi   | ctims with 1  | need transm  | a is independent    | ct additional | 1 treatmen |
|-----|-------------|---------------|---------------|--------------|---------------------|---------------|------------|
|     | HI, = SUIUI | uch of victin | ns with necci | traumas is   | , not independent " | of additional | trechnent  |
|     | Two faile   | d test at .   | sulo signific | ance.        | $\checkmark$        |               |            |
|     |             |               |               |              |                     |               | je.        |
|     |             | Steriod       | Placebo       | Total        |                     |               |            |
|     | Died        | 396           | 422           | 818          |                     |               |            |
|     | Survived    | 665           | 665           | 1330         |                     |               |            |
|     | Total       | 1061          | F801          | 2148         |                     |               |            |
|     |             |               |               |              |                     |               |            |
|     | observed    | Expected      | (10-          | EI-0.5)2     |                     |               |            |
|     | 396         | 404.05        | ; ;           | E<br>0.14    | 11                  |               |            |
|     | 665         | 656.95        |               | U.087 L      | /                   |               |            |
|     | 422         | 413,95        | 1.            | 0.137        |                     |               |            |
|     | 665         | 637.0         | s             | 1.183        |                     |               |            |
|     |             |               |               | 1.548. f     | 10                  |               |            |
|     | Test stat   | istic = 1.50  | 48 1          | Degrees of 1 | iveedom = 1         |               |            |
| ć   | Criticay    | value = 3.8   | 41 BIM        | 1 20         |                     |               |            |
|     | 1.548 = 3   | 3.841 . 4     | ne accept     | to as the    | re is significant   | evidence ho   |            |
|     | suggest -   | mat the si    | ruivell of u  | ictims wit   | n head how ma       | is independ   | lent       |
|     | of the      | additional    | treatment.    |              | EI M                |               | 25.5       |

| Two failed | test at 1º10   | significance le | vel        |              | 24 | Х |
|------------|----------------|-----------------|------------|--------------|----|---|
|            |                |                 |            |              |    |   |
| Observed   | Expected       | 5 (0-E)2        |            |              |    |   |
| 52         | 44             | 1.4545          |            |              |    |   |
| 36         | 41             | 0.698           | SC         |              |    |   |
| 12         | 15             | 0.6             | ml         |              |    |   |
| 36         | 44             | 1.4545          | m          |              |    |   |
| 46         | <u>ک</u><br>4۱ | 0.6098          |            |              |    |   |
| 81         | 15             | 0.6.            |            |              |    |   |
|            |                | 5= 5,3286       |            | 1            | 1  |   |
| Test stuti | stic = 5.3286  | Degrees         | of freedom | = 2          | (  |   |
| Critical 1 | value = 9.21   | v (             | 21         |              | )  |   |
| S. 3286 <  | 9.210 50 0     | ve Accept the   | · m1       |              | (  |   |
| 3          |                |                 |            |              |    |   |
| lore is a  | a ani lancer   | m de let di     |            | 10 × + 0 + 0 |    |   |

Many candidates stated the hypotheses correctly but often the null and alternative hypotheses were reversed in either part (a) or part (b) or both. Some nonsense statements were common, for example "Head trauma independent of treatment"

"Survival independent of death"

The candidate shown has incorrect, reversed hypotheses in part (b)

Expected frequencies in part (a) were usually correctly evaluated and a sensible attempt at a test statistic with use of Yates' correction was generally seen. Very few applied Yates' correction correctly with the majority finding (O - E - 0.5)<sup>2</sup>. The solution shown has, in error, used (O - E - 0.5)<sup>2</sup> for some elements of the test statistic and has obtained an incorrect answer. The conclusion shown for part (a) is clear, correct and in context.

In part (b) (i) there were a few excellent solutions but many candidates simply carried out a

 $\chi^2$  test for association using the percentages given and made no effort to evaluate the actual frequencies. This is shown in the solution given where expected values of 44, 41 and 15 are seen.

In part (b) (ii) few candidates referred to observed and expected frequencies to identify a source of association. The conclusion seen in the example solution has incorrectly identified acceptance of the null hypothesis as meaning that there is an association but has not made any attempt to identify any source of that association.

| 3(a)   | $H_o$ No associated drug treatment $H_1$ Association and drug treatment drug tre | ion betwee<br>used.<br>exists betw<br>nent used.                          | n survival<br>veen surv                   | and<br>ival         | B1       |  |                                              |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------|---------------------|----------|--|----------------------------------------------|
|        | 1 tail 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |                                           |                     |          |  |                                              |
|        | Died<br>Survived                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Steroid           404.05           656.95                                 | Placebo           413.95           673.05 |                     | M1<br>m1 |  | E method<br>All correct                      |
|        | $ts = \sum \frac{( O - E )}{404.05} + \frac{7.55^2}{413}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{\left -0.5\right ^{2}}{E} = \frac{5^{2}}{.95} + \frac{7.55}{.656}$ | $\frac{5^2}{95} + \frac{7.5}{673}$        | $\frac{55^2}{3.05}$ | M1<br>m1 |  | ts correct denominators<br>Yates' correction |
|        | = 0.456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |                                           |                     | A1       |  | Range 0.4 – 0.5                              |
|        | cv df = 1 5%<br>ts < 3.841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41                                                                        |                                           | B1<br>M1            |          |  |                                              |
|        | Accept H <sub>o</sub><br>No sig evidenc<br>association bet<br>whether or nor<br>treatment is use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t an<br>val and<br>drug                                                   |                                           | A1<br>E1            | 10       |  |                                              |
| (b)(i) | <ul> <li>b)(i) H<sub>o</sub> No association between the drug used and the level of consciousness H<sub>1</sub> An association exists between the drug used and the level of consciousness</li> <li>1 tail 1%</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |                                           |                     |          |  |                                              |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                           |                                           |                     | B1       |  |                                              |
|        | Drug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Standard                                                                  | New                                       |                     |          |  |                                              |
|        | Unconscious                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 130                                                                       | 90                                        |                     |          |  |                                              |
|        | Semi-<br>conscious                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90                                                                        | 115                                       |                     | M1       |  | For attempt to find raw frequencies          |
|        | Fully<br>conscious                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                                                                        | 45                                        |                     | A1       |  | 4 or more correct                            |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                           |                                           |                     |          |  |                                              |

|      | Expected frequ<br>Drug<br>Level<br>Unconscious                                                                                                         | New<br>110                                                                                 | M1<br>m1                                                                        |          | For one E correct<br>For all E correct<br>ft if original % used                                      |                                                                                                  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|      | conscious<br>Fully<br>conscious                                                                                                                        | 102.5<br>37.5                                                                              | 102.5<br>37.5                                                                   |          |                                                                                                      |                                                                                                  |
|      | $ts = \sum \frac{(O - E)^2}{E}$<br>= $\frac{(130 - 110)}{110}$<br>= 13.3<br>df = 2 1%<br>ts > 9.21                                                     | $\frac{110)^2}{0} +$                                                                       | M1ft<br>A1<br>B1<br>M1<br>A1                                                    | 10       | ts sum with correct<br>denominators<br>For ts in range 13.0 – 13.6<br>For cv<br>For comparison ts/cv |                                                                                                  |
| (ii) | Reject H <sub>o</sub><br>Sig evidence to<br>exists between<br>consciousness<br>drug are <b>far les</b><br>unconscious 30<br>operation was o<br>versa). | o suggest an<br>drug used a<br>– patients g<br>ss likely to<br>) minutes af<br>completed ( | a association<br>and level of<br>iven the new<br>be<br>fter their<br>( and vice | E1<br>E1 | 2                                                                                                    | Sensible correct<br>interpretation in context.<br>Sources of association<br>identified correctly |

#### **Question 4**

The nicotine content, in milligrams, is measured for a random sample of 16 king-size cigarettes each from a different brand. The brands are either categorised as 'Very Low Tar', 'Low Tar' or no claim is made about tar content.

| Very Low Tar | Low Tar | No Claim Made |
|--------------|---------|---------------|
| 0.40         | 0.69    | 0.86          |
| 0.67         | 0.96    | 1.06          |
| 0.76         | 1.03    | 1.12          |
| 0.82         | 1.04    | 1.26          |
| 1.01         | 1.08    | 2.03          |
| 1.02         |         |               |
|              |         |               |

The results are given in the table.

Carry out a distribution- free test, using the 5% significance level, to investigate whether there is any difference in the average nicotine content for cigarette brands categorized as 'Very Low Tar', 'Low Tar' or those for which no claim is made about tar content.

Interpret your conclusion in context.

(13 marks)

|   | B) Ó                                                          |
|---|---------------------------------------------------------------|
| 4 | Mo no difference in average nicotine content 5705.L.          |
|   | Hy is in in in in hootail                                     |
|   |                                                               |
|   | Very Low Tar n=6 Low Tar n=5 No Claim Made a=5                |
|   | 1 3 6                                                         |
|   | 2 7 12                                                        |
|   | 4 10 14                                                       |
|   | S 11 15                                                       |
| _ | 8 13 16                                                       |
|   | 9                                                             |
|   | T' = 29 $T' = 44$ $T'' = 63$                                  |
|   |                                                               |
|   | $H = 12 (7^2 - 3(N+1))$                                       |
|   | $N(N+1) \leq n$                                               |
|   |                                                               |
|   | $= 12 + 29^{2} + 44^{2} + 63^{2} - 3 \times 17$               |
|   | 16×17 6 65 5                                                  |
|   |                                                               |
|   | = 7.287(3sf)                                                  |
|   |                                                               |
|   | Vegrees of freedom = 3-1 CV= \$m7.378 BO                      |
|   | = 2                                                           |
|   |                                                               |
|   |                                                               |
| L |                                                               |
|   | accept lieged Mg                                              |
| 1 |                                                               |
|   | 1 2 18 /1 [11]                                                |
|   |                                                               |
|   | Loncuision AD                                                 |
|   | 1. Los C 1. 5 18 . Mois accepted                              |
|   | widence to suggest there is no difference in average nicotine |
|   | content. El B                                                 |
|   | N'EF                                                          |

Candidates frequently incorrectly stated the hypotheses and, if referring to population medians, failed to mention that the alternative hypothesis should be that **at least two** of the average nicotine levels from the three cigarette brands differ. The solution shown illustrates this.

The Kruskal Wallis test was carried out successfully by many candidates as seen in the solution considered here but some candidates did not seem to have the confidence to start the test. Most candidates showed their rank values but many made errors in ranking. Critical values were frequently obtained from n = 16 rather than n = 3.

The solution shown has an incorrect cv but one from the correct tables with the correct degrees of freedom so gains a method mark for comparison with the test statistic. The conclusion was explained well in context and most candidates gained one mark. In this case the candidate has followed through an incorrect conclusion with a correct interpretation.

| 4 | $H_0$ Samples an                  | e taken from i                | identical            |          |  | or                                                         |  |  |  |
|---|-----------------------------------|-------------------------------|----------------------|----------|--|------------------------------------------------------------|--|--|--|
|   | populations                       |                               |                      | B1       |  |                                                            |  |  |  |
|   | $H_1$ Samples at                  | e not taken fro               | om identical         |          |  |                                                            |  |  |  |
|   | populations –                     | population av                 | erage nicotine       |          |  | H <sub>0</sub> $\eta_{VLow} = \eta_{Low} = \eta_{Noclaim}$ |  |  |  |
|   | levels differ                     | 1 1                           | U                    | B1       |  | $H_1$ at least two of                                      |  |  |  |
|   | 5% 1 tail                         |                               |                      |          |  | $n_{1} = n_{1} = n_{1}$                                    |  |  |  |
|   |                                   |                               |                      |          |  | do differ                                                  |  |  |  |
|   | Ranks                             |                               |                      |          |  | do unici                                                   |  |  |  |
|   | Very Low                          | Low Tar                       | No Claim             |          |  |                                                            |  |  |  |
|   | Tar                               |                               | Made                 |          |  |                                                            |  |  |  |
|   | 1                                 | 3                             | 6                    |          |  | Ranks                                                      |  |  |  |
|   | 2                                 | 7                             | 12                   | M1       |  | At least 10 correct                                        |  |  |  |
|   | 4                                 | 10                            | 14                   | m1       |  |                                                            |  |  |  |
|   | 5                                 | 11                            | 15                   |          |  |                                                            |  |  |  |
|   | 8                                 | 13                            | 16                   |          |  |                                                            |  |  |  |
|   | 9                                 |                               |                      |          |  |                                                            |  |  |  |
|   |                                   |                               |                      | m1       |  | Totals -any one correct                                    |  |  |  |
|   | $T_{VLow} = 29$                   | $T_{Low} = 44$                | $T_{No\ claim} = 63$ | A1       |  | ÿ                                                          |  |  |  |
|   | $n_{VLow} = 6$                    | $n_{Low} = 5$                 | $n_{No\ claim}=5$    |          |  | <b> </b>                                                   |  |  |  |
|   |                                   |                               |                      | m1       |  | test stat $H =$                                            |  |  |  |
|   | $m_{i}T_{i}^{2} 29^{2}$           | $^{2}$ 44 <sup>2</sup> 63     | 2                    |          |  |                                                            |  |  |  |
|   | $\sum \frac{i}{i} = \frac{2i}{c}$ | $-+\frac{11}{5}+\frac{05}{5}$ | - = 1321.17          |          |  | 12 $m T^{2}$                                               |  |  |  |
|   | $\overline{i=1}$ $n_i$ 0          | 5 5                           |                      | A1       |  | $\frac{12}{N(N-1)}\sum_{i=1}^{n-1} - 3(N+1)$               |  |  |  |
|   |                                   |                               |                      |          |  | $N(N+1) \stackrel{\sim}{\underset{i=1}{\leftarrow}} n_i$   |  |  |  |
|   | н – <u>12</u>                     | (1321 17 (3                   | $\times 17) - 7.20$  |          |  | 7.0 -7.5                                                   |  |  |  |
|   | $11 - \frac{1}{16 \times 17}$     | (1521.17-(5                   | ×17) = 7.29          |          |  |                                                            |  |  |  |
|   |                                   |                               |                      |          |  |                                                            |  |  |  |
|   | Critical value                    | from $\gamma_2^2 = 5$         | .991 5%              | D1       |  |                                                            |  |  |  |
|   | H > 5.001                         | $\chi_2 = c$                  |                      | BI<br>M1 |  |                                                            |  |  |  |
|   | 11 / J.991                        |                               |                      | IVI I    |  |                                                            |  |  |  |
|   | Sig evidence t                    | o reject H. an                | d conclude           | A 1      |  | Difference in context                                      |  |  |  |
|   | that samples a                    | re not from ide               | entical              | AI       |  |                                                            |  |  |  |
|   | nonulations                       |                               | cintical             |          |  |                                                            |  |  |  |
|   | populations.                      |                               |                      |          |  |                                                            |  |  |  |
|   | Significant ex                    | vidence at the                | 5% level to          |          |  | Mention of 'at least two' or a                             |  |  |  |
|   | suggest that the                  | ne population                 | average              | F1       |  | sig difference between                                     |  |  |  |
|   | nicotine level                    | differs for the               | three                |          |  | nicotine levels of king-                                   |  |  |  |
|   | categories of                     | king-size ciga                | rettes.              |          |  | sizecigarettes for which no                                |  |  |  |
|   |                                   |                               |                      | 1        |  |                                                            |  |  |  |

| It appears that those king-size cigarettes |    |    | claim made and those claimed |
|--------------------------------------------|----|----|------------------------------|
| that have no claim made about tar levels   | E1 |    | to have 'Very Low Tar'       |
| have a significantly higher average        |    |    | to have very how rul .       |
| nicoting level then these claimed to have  |    |    |                              |
| We way Lease Ter?                          |    |    |                              |
| very Low Tar .                             |    |    |                              |
|                                            |    | 13 |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |
|                                            |    |    |                              |

#### Question 5a

The LDL cholesterol level was measured for each of 16 males living in the USA in 2006. Of these, 8 had been randomly selected from males aged under 30 years and 8 had been randomly selected from males aged over 50 years.

The age and the LDL cholesterol level, in mg/dl, for each male are given in the table.

| Male | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Age  | 29  | 18  | 29  | 28  | 23  | 19  | 21  | 27  | 56  | 54  | 51  | 52  | 71  | 65  | 54  | 76  |
| LDL  | 121 | 137 | 140 | 159 | 177 | 189 | 191 | 201 | 181 | 196 | 225 | 228 | 234 | 249 | 259 | 339 |

(a) Carry out a Mann-Whitney *U* test, at the 5% level of significance, to investigate whether, in the USA, males aged under 30 years have, on average, a lower LDL cholesterol level than those aged over 50 years.

(10 marks)

| (5a) Ho!              | Samples of<br>Identical                      | populato                                           | from<br>r.s.                                       |
|-----------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------------|
|                       | Samplos o<br>identical<br>Under 30<br>LDL Cr | ve not to<br>populat<br>o Liebro L<br>notestoron L | iken from<br>chs - males<br>nave a lower<br>touel. |
| nan<br>Mal            | d=0.05<br>k order.<br>e age                  | one-tai<br>LDL                                     | led.                                               |
| 1<br>2<br>3<br>4      | 7.5<br>1.<br>7.5<br>6                        |                                                    |                                                    |
| 5<br>6<br>7<br>8<br>9 | <u>4</u><br>2<br>3<br>5 r                    | M1 /                                               | M1 groups                                          |
| 10<br>10<br>11<br>12  |                                              | raules 9<br>11<br>12<br>13                         |                                                    |
|                       |                                              | 14<br>15<br>16                                     |                                                    |
| Toro                  | $\frac{1}{N^{\mu}} = \frac{1}{N^{\mu}}$      | \$ 36 TLON                                         | = 8 MI                                             |

# **SS03**

Test Star = ()-5 n 5 -MI 8 60 --2 1250 AD -BO K MO 10 Stat CC.V est 21 D RN 0 Co do VaCIO 0 0 0 01 020 tin d over 12cr OV 5

#### Commentary

In part (a), few students had the confidence to separate the two age groups and carry out the required The Mann-Whitney test on the LDL levels.

Some candidates made an attempt to sort the data into two groups and some made an effort to rank the data as one group but frequently the ages were ranked as well or were ranked as one group with the LDL levels. This is seen in the solution here.

Hypotheses were well worded in most cases as in the given solution but very few totally correct answers were seen.

| 5(a) | H <sub>o</sub> Samples are taker<br>populations<br>H <sub>1</sub> Samples are not ta<br>populations (males ag<br>have lower average L<br>1 tail 5% | n from identical<br>ken from identical<br>ged under 30 years<br>.DL)                                                | B1       |    | Hypotheses referrring to<br>population averages also<br>acceptable                     |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------|----|----------------------------------------------------------------------------------------|
|      | Under 30 ranks 1 2 3 4 5 7 8 10                                                                                                                    | Over 50 ranks           6           9           11           12           13           14           15           16 | M1<br>M1 |    | Successful separation of age<br>groups<br>Attempt at M-Whitney - ranks<br>as one group |
|      | $T_G = 1 + 2 + \dots + 10$                                                                                                                         | = 40                                                                                                                | M1       |    | for total attempt                                                                      |
|      | $T_{R} = 6 + 9 + \dots + 16$ $U_{G} = 40 - \frac{8 \times 9}{2} = 40$ $U_{R} = 96 - \frac{8 \times 9}{2} = 60$                                     | = 96<br>4<br>50                                                                                                     | M1       |    | for U formula correct                                                                  |
|      | Test stat U = 4                                                                                                                                    |                                                                                                                     | A1       |    |                                                                                        |
|      | cv = 16 $n = 8$ $m = 8$                                                                                                                            | 3 1 tail 5%                                                                                                         | B1       |    | correct/relevant cv used                                                               |
|      | U = 4 < 16                                                                                                                                         |                                                                                                                     | M1       | 10 |                                                                                        |
|      | Reject H <sub>o</sub><br>Significant evidence<br>suggest that the avera<br>lower for males aged                                                    | at the 5% level to<br>age LDL level is<br>under 30 years.                                                           | A1<br>E1 |    | In context                                                                             |
|      |                                                                                                                                                    |                                                                                                                     |          |    |                                                                                        |

#### **Question 5b**

The median LDL cholesterol level, for males aged between 35 years and 64 years living in the USA, is known to be 223 mg/dl.

A random sample of 9 males, aged between 35 years and 64 years, living in China, each had their LDL level, in mg/dl, measured with the following results:

158 225 164 178 182 184 191 195 231

Carry out a sign test, at the 10% level of significance, to investigate the claim that the median LDL cholesterol level for males aged between 35 years and 64 years is greater for those living in the USA than for those living in China. Interpret your conclusion in context.

(7 marks)



Some excellent solutions were seen in part (b) and the majority of candidates quoted the binomial probability of 0.0898 and showed a comparison with 0.10. The solution shown gives the correct value of 0.898 from the binomial tables but compares to a 2 tail significance level of 5%.

Candidates lost marks if probabilities from the binomial tables were not stated or a critical region was identified without the relevant probability being quoted.

The hypotheses were frequently stated incorrectly with H<sub>1</sub>  $\eta$  > 223 commonly seen as in the solution given here.

Conclusions were often incorrectly stated or poorly worded

| 5(b) | $H_0 \eta = 223$<br>$H_1 \eta < 223$ 1 tail 10%                                                                                                                                                        | B1                   |   |                                                                                                                                                  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Signs<br>- + +<br>$2^+ / 7^-$ signs – test values<br>Binomial (9, 0.5) model<br>$P (\ge 7 -) = P(\le 2 +) = 0.0898 < 0.10$<br>for one tail test                                                        | M1<br>A1<br>M1<br>M1 |   | signs<br>test stat correct and identified<br>Binomial model used and<br>probability attempted<br>Comparison of Binomial<br>probability with 0.10 |
|      | Reject $H_o$ .<br>There is sufficient evidence, at the 10% level, to suggest that the median LDL level is greater for males aged 35 to 64 years living in the USA than that for those living in China. | A1<br>E1             | 7 | Interpretation in context                                                                                                                        |