ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Statistics 6380

SS05 Statistics 5

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

\(\left.\begin{array}{llll}M \& mark is for method \&

m or dM \& mark is dependent on one or more M marks and is for method

A \& mark is dependent on M or m marks and is for accuracy\end{array}\right]\)| B | mark is independent of M or m marks and is for method and accuracy | |
| :--- | :--- | :--- |
| E | mark is for explanation | |
| for ft or F | follow through from previous
 incorrect result | MC |

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

SS05

Q	Solution	Marks	Total	Comments
1(a)	$s^{2}=0.3955$	B2	2	AWFW 0.395 to 0.396
(b)	Assuming the weights of truffles are normally distributed: $v=12-1=11$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$		Must indicate that population is normally distributed
	CVs for χ^{2} are 3.816, 21.920 confidence limits for σ^{2} are	B1		Both; accept 3.82, 21.9
	$\frac{11 \times 0.3955}{21.920}, \frac{11 \times 0.3955}{3.816}$	M1		\checkmark on s^{2} and χ^{2} values
	$(0.198,1.14)$	A1	6	(0.198 to 0.199, AWRT)
(c)	sd of $0.4 \Rightarrow$ variance of 0.16 which is below CI so statement is unlikely to be	E1 \checkmark		$\checkmark \text { on CI }$
		B1 \checkmark	2	\checkmark on CI B1 if CI for standard deviation found but incorrectly used.
	Total		10	
2(a)	$X=$ time in minutes for bus 6 journey $Y=$ time in minutes for bus 23 journey			
	$\mathrm{H}_{0}: \mu_{X}=\mu_{Y}$	B1		Compares population means
	$\mathrm{H}_{1}: \mu_{X} \neq \mu_{Y}$	B1		$=$ and \neq
	CVs of z are ± 1.96	B1		1.96 accepted as implying 2-tail
	$13.2-14.6$			
	$\sqrt{\frac{1.8^{2}}{1.8^{2}}}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Subtraction either way if used consistently
	$\sqrt{15}^{+} 10$			
	$=-1.905$	A1		AWFW -1.91 to -1.90
	Not enough evidence to suggest a difference in mean journey times.	A1 \checkmark	7	\checkmark on CV and test statistic Only if 2-tail test used
(b)	Random samples from population of journey times or samples are independent.	B1	1	Accept valid comment in context implying samples are representative
(c)	Concluding there is no difference in mean journey times when there is a difference.	B1	1	
	Total		9	

SS05 (cont)

Q	Solution	Marks	Total	Comments
3(a)(i)	$\mathrm{f}(x)= \begin{cases}0.2 & 97.5 \leq x \leq 102.5 \\ 0 & \text { otherwise }\end{cases}$	B1	1	Mark given for finding 0.2 without formal expression
(ii)	$\mathrm{sd}=\sqrt{\frac{(102.5-97.5)^{2}}{12}}$	M1		
	$=\frac{5}{\sqrt{12}}=1.44$	A1	2	AWRT
(b)	$\mathrm{P}(98 \leq X \leq 101)=\frac{101-98}{102.5-97.5}$	M1		
	$=\frac{3}{5}=0.6$	A1	2	CAO
(c)	$\begin{aligned} & \bar{X} \sim N\left(100, \frac{25}{12 \times 50}\right) \\ & =N\left(100, \frac{1}{24}\right) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$		Normal distribution Mean = 100; Variance from (a)(ii) divided by 50
	Large sample so central limit theorem applies.	E1	3	Mark given for mean of large sample or reference to CLT
	Total		8	

SS05 (cont)

Q	Solution	Marks	Total	Comments
4(a)	$\begin{aligned} & \mathrm{H}_{0}: \text { Number of calls, } X, \sim \text { Poisson }(3) \\ & \mathrm{H}_{1}: \text { not } \mathrm{H}_{0} \end{aligned}$	B1		Must specify which Poisson
	$\begin{array}{llll} x & O & \mathrm{P}(X=x) \quad E \quad & \frac{(O-E)^{2}}{E} \end{array}$			In table: accept probabilities by formula or tables to at least $3 \mathrm{dp} ; E$ values to at least 2 dp .
	$\begin{array}{rrrr}0 & 1 \\ 1 & 0.0498 & 3.984 \\ 0.1493 & 11.944\end{array}$	M1		Poisson probabilities
	$1 \begin{array}{lll}1 & 9 \int \\ 0.1493 & 11.944\} \\ 2.206\end{array}$	M1		$E=\text { Probability } \times 80$
	$\begin{array}{lllll} 2 & 23 & 0.2241 & 17.928 & 1.435 \\ 3 & 19 & 0.2240 & 17.920 & 0.065 \end{array}$	M1		Combining first two groups ($O=10 ; E=15.92$ to 15.93)
	$\begin{array}{lllll}4 & 17 & 0.1681 & 13.448 & 0.938\end{array}$	m1		Last group ≥ 6; dependent on first M1
	5 6 0.1008 8.064 0.528 6 5 0.0839 6.712 0.437	A2		7 Es AWRT 1 dp (A1 if 5 or 6); lose one
	≥ 6 5 0.0839 6.712 0.437 80 1 80 5.609			A mark for too much rounding
	$\chi^{2}=\sum \frac{(O-E)^{2}}{E}=5.609$	$\begin{gathered} \text { M1 } \\ \text { A1 } \checkmark \end{gathered}$		Use of formula AWFW 5.60 to 5.71 ; \checkmark only on minor calculation error
	DF $v=(7-1)-1=5$	B1		No. of categories used -1
	CV of $\chi^{2}=9.236$	B1 \checkmark		\checkmark on v
	Insufficient evidence at 10% level to say that Poisson (3) is not a suitable model.	A1 \checkmark	12	\checkmark on CV and tabulated total Accept Poisson with no parameter
(b)(i)	Same number of categories but one more constraint so $v=4$, giving	E1		1 less than DF in (a)
	$\chi^{2}=7.779$	B1	2	χ^{2} matching v, seen here or in (ii)
(ii)	Total from table unchanged and is <7.779 so conclusion is same as in (a)	B1 \checkmark	1	\checkmark on values from (a) if consistent; conclusion must be justified
(c)	Number of calls, Y, in 8 hours $\sim \operatorname{Poisson}(24) \approx \mathrm{N}(24,24)$	B1		
	$\begin{aligned} \mathrm{P}(Y>30) & =1-\Phi\left(\frac{30.5-24}{\sqrt{24}}\right) \\ & =1-\Phi(1.33) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$		Continuity correction
	$=0.092$	A1 \checkmark	4	\checkmark on lack of c. c. only SC B1 if try to use normal approximation,
	Alternatively By calculator from Poisson: $\begin{aligned} \mathrm{P}(Y>30) & =1-\mathrm{P}(Y \leq 30) \\ & =1-0.90415=0.0959 \end{aligned}$	(B4)		but wrong variance AWRT 0.096
	Total		19	

SS05 (cont)

SS05 (cont)

Q	Solution	Marks	Total	Comments
6(a)	$\mathrm{H}_{0}: \sigma_{X}^{2}=\sigma_{Y}{ }^{2}$	B1		Or $\mathrm{H}_{0}: \sigma_{X}=\sigma_{Y}$ $\mathrm{H}_{1}: \sigma_{X} \neq \sigma_{Y} \cdot$ (both
	DF: $v_{1}=10, v_{2}=8$	B1		
	$\begin{aligned} & \mathrm{CV} \text { of } F \text { is } 3.347 \\ & S_{V}{ }^{2} \\ & \hline \end{aligned}$	B1		Both B1 if dof reversed with matching CV
	$\frac{s_{X}}{s_{Y}{ }^{2}}=\frac{3.798}{2.925}$	M1		
	= 1.30	A1		AWRT
	$<\mathrm{CV}$ so reasonable to believe that $\sigma_{X}{ }^{2}=\sigma_{Y}^{2}$	E1	6	Justifies conclusion; accept appropriate diagram
(b)	$\mathrm{H}_{0}: \mu_{X}-\mu_{Y}=10$			B1 For saying difference of means $=10$;
	$\mathrm{H}_{1}: \mu_{X}-\mu_{Y}<10$ Pooled estimate of variance	B2,1		B1 For saying difference of means $=10$; <10 without saying which way subtracted or for X and Y reversed
	$=\frac{(10 \times 3.798)+(8 \times 2.925)}{18}$	M1		
	$=3.41$	A1		
	DF $v=18$	B1		
	$\begin{aligned} & \mathrm{CV} \text { of } t=-2.552 \\ & \hline(36.8-29.1)-1 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \end{aligned}$		Accept +2.552 here Use of correct formula
	$\text { test statistic }=\frac{(30.8-29.1)-10}{\sqrt{(11)}}$	A1		For -10
	$\sqrt{3.41\left(\frac{1}{11}+\frac{1}{9}\right)}$	A1 \checkmark		Correct values substituted; \checkmark on pooled estimate
	$=-2.77$	A1 \checkmark		\checkmark on pooled estimate
	the difference in mean fat contents is less than 10 grams.	A1 \checkmark	11	\checkmark on test statistic and CV
	Total		17	
	TOTAL		75	

