

General Certificate of Education

Statistics 6380

SS04 Statistics 4

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

М	mark is for method			
m or dM	mark is dependent on one or more M marks and is for method			
А	mark is dependent on M or m marks and is for accuracy			
В	mark is independent of M or m marks and is for method and accuracy			
E	mark is for explanation			
or ft or F	follow through from previous			
	incorrect result	MC	mis-copy	
CAO	correct answer only	MR	mis-read	
CSO	correct solution only	RA	required accuracy	
AWFW	anything which falls within	FW	further work	
AWRT	anything which rounds to	ISW	ignore subsequent work	
ACF	any correct form	FIW	from incorrect work	
AG	answer given	BOD	given benefit of doubt	
SC	special case	WR	work replaced by candidate	
OE	or equivalent	FB	formulae book	
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme	
–x EE	deduct <i>x</i> marks for each error	G	graph	
NMS	no method shown	c	candidate	
PI	possibly implied	sf	significant figure(s)	
SCA	substantially correct approach	dp	decimal place(s)	

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	$\overline{x} = 161.167$ $s = 9.6003$	B1		161.167 (161 to 161.2) and
	95% confidence interval for mean			9.6003 (9.595 to 9.605)
	$161.167 \pm 2.571 \times 9.6003/\sqrt{6}$	B1		5df
	161.167 ± 10.077	B1√`		2.571 or 2.57
	151.09 ~ 171.24	M1		use of their $sd/\sqrt{6}$
		ml		method for confidence interval - allow
				incorrect t
		A1	6	151.09 (151 to 151.2) and
				171.24 (171 to 171.3)
				or 161.167 (161 to 161.2) and
				10.077 (10.05 to 10.1)
(b)	Confidence interval provides evidence	E1		evidence mean exceeds 150g
	that mean weight of bananas exceeds			
	150g but some bananas will weigh less	E1	2	some weigh less than 150g
	than 150g.			
	Total		8	
2(a)	$H_0: p = 0.25$	B1		one correct hypothesis - generous
	$H_1: p > 0.25$	B1		both correct - ungenerous but
	B(14,0.25)			accept p as implying population
	P(9 or more) = 1 - 0.9978 = 0.0022	B1		use of B(14,0.25)
	< 0.01	M1		Attempt to calculate P(9 or more)
	Reject H_0 evidence that more than 25%			-generous, allow P(more than 9),
	willing to pay an increased rent.			use of normal approx, wrong tail etc
		Al		0.0022 (0.0021 to 0.0023)
		A1√		conclusion, their figures -
				disallow normal approx,
				wrong tail
		Al	7	correct conclusion in context -
				requires previous M1A1A1 \checkmark
	s.c. critical region 8 or more (nearest to			M1 attempt to find critical region
	1%) or 9 or more (strictly less than 1%)			- generous, allow normal approx, wrong
				tail etc
				A1 allow 8 or more or 9 or more

SS04 (cont)

Q	Solution	Marks	Total	Comments
2(b)(i)	p = 65/124 = 0.52419	B1		0.524 (0.524 to 0.525) or 65/124
	90% confidence interval	B1		1.6449 (1.64 to 1.65)
		M1		method for sd - their <i>p</i>
	(0.52419×0.47581)	m1		correct method - allow arithmetic
	0.52419 ± 1.6449			mistakes and incorrect z
	γ(124)			0.450 (0.45 to 0.451) and 0.598
	0.52419 ± 0.07377			(0.597 to 0.599) or
	0.450~0.498	A1		0.524 (0.524 to 0.5245) and
				0.0738 (0.0737 to 0.074)
	p = 11/124 = 0.08871	B1		0.0887 (0.088 to 0.089) or 11/124
(ii)	90% confidence interval	M1		method - allow arithmetic mistakes and
	0.08871×0.91129			incorrect z
	$0.08871 \pm 1.6449 \sqrt{-0.08871 \times 0.91129}$	A1	8	0.047 (0.046 to 0.047) and
	V 124			0.131 (0.13 to 0.131) or
	0.08871 ± 0.04200			0.0887 (0.088 to 0.089) and
	$0.047 \sim 0.131$			0.042 (0.0415 to 0.0425)
(c)	Evidence that more than 25% would say	F1√		more than 25% for unspecified increase
	yes when increase is unspecified.			
	Confirmed in (b)(i) when a small(10%)	E1√		confirmed for small increase
	increase is suggested but much less than	211		
	25% in (b)(ii) when a large(40%)			
	increase is suggested.	E1	3	but less for large increase
	Total		18	
3(a)	$\overline{x} = 59.575$ $s = 4.5380$	B1		59.575 (59.5 to 59.6) and
	$H_0: \mu = 60$			4.538 (4.53 to 4.55)
	$H_1: \mu \neq 60$	B1		one hypothesis - generous
		B1		both hypotheses - ungenerous
	$t = (59.575 - 60)/(4.538/\sqrt{8})$	M1		use of their $sd/\sqrt{8}$
	= -0.265	m1		method - ignore sign
		A1		-0.265(-0.26 to -0.27)
	$cv t_7 \pm 1.895$	B1		7df
		B 1√		their df
	Accept $\mu = 60$			
	No significant evidence to suppose the			
	mean temperature at which sprinklers	A1√	9	conclusion
	are activated is not 60°C		_	

SS04 (cont)

Q	Solution	Marks	Total	Comments
(b)(i)	Sprinklers set off unnecessarily causing	E2(1)		E2 for reason in context
	mess and damage.			
(ii)	Sprinklers set off too late to prevent fire damage	E2(1)		E1 reason unconvincing or not in context
(iii)	Large standard deviation means temperature at which sprinklers set off is variable and so unpredictable	E2(1)		
(iv)	Testing is time consuming and expensive - may require sprinklers to be set off unnecessarily.	E2(1)	8	
	Total		17	
4(a)	H ₀ : $\mu = 8$ H ₁ : $\mu > 8$ Poisson mean 8	B1		both hypotheses - accept μ or λ as implying population - generous
	$P(16 \text{ or more}) = 1 - 0.9918 \\= 0.0082 \\< 0.05$	M1		attempt to calculate P(16 or more) - generous
	Reject H ₀ ; conclude there is significant evidence that the mean number of such	M1		method for P(16 or more) disallow normal approx
	emails received exceeds 8 per week	A1		0.0082 (0.008 to 0.0082)
		A1√		conclusion - needs both M1s
	s.c. $cr \ge 13$ nearest to 5% ≥ 14 strictly less than 5%	A1	6	A1 in context - needs previous $A1$
(b)	$H_0: \mu = 8$ $H_1: \mu < 8$	B1		both hypotheses - accept $\mu = 48$ etc
	6 weeks \rightarrow Poisson mean 48	B1		Poisson mean 8×6
	approximate by Normal, mean 48 standard deviation $\sqrt{48} = 6.9282$	M1		attempted use of normal approx - generous
		A1		mean 48, sd $\sqrt{48}$
	$z = (38.5 - 48)/\sqrt{48} = -1.37$	M1		method for z - ignore sign and
	critical value – 1.6449			continuity correction
	Accept H_0 ; conclude no significant	AI		-1.3/(-1.365 to -1.3/5) or
	week.			-1.44(-1.44 to -1.45) fr c.c. not used.
	s.c. exact Poisson P(38 or fewer) =	B1		1.6449 (1.64 to 1.65) -ignore sign conclusion - must be
	0.0814 (0.081 to 0.0815)	A1√		compared with lower tail of z
	<i>p</i> - value using normal 0.085	A1	9	in context - needs previous A1 \checkmark

SS04 (cont)

Q	Solution	Marks	Total	Comments
4(c)	Evidence that mean number of emails	E1√		$E1 \checkmark > 8$ before change
	before changes was greater than 8 per			E1 not greater than 8 now
	week. Some evidence - but not			E1 some evidence but not
	significant - that number is now less			significant less than 8 now
	than 8 per week. Conclude changes have	E1	2	E1 reduction
	lead to a reduction in emails of			maximum 2
	complaint.			if not in context maximum 1
	Total		17	
5(a)	z = (250 - 206)/28 = 1.5714	M1		method for z - ignore sign
	Probability $> 250 = 0.0580$	m1		correct method
		A1	3	0.0580 (0.058 to 0.0583)
(b)(i)	normal mean 412	B1		412 cao
	standard deviation $\sqrt{28^2 + 28^2} = 39.598$	B1		method for sd
(ii)	z = (300 - 412)/39598 = -2828	M1		normal (may be implied) and
	Probability profit insufficient			method for z - ignore sign
	= 1 - 0.99765 = 0.00235	m1		correct method
		A1	5	0.00235 (0.0023 to 0.0024)
(c)(i)	normal mean 412	B1		412 cao
	standard deviation $2 \times 28 = 56$	B1		56 cao
(ii)	z = (300 - 412)/56 = -2	M1		normal (may be implied) and
	Probability insufficient = $1 - 0.97725$			method for z - ignore sign
	= 0.02275	m1	5	correct method
		A1		0.02275 (0.0227 to 0.023)
(d)	Probability in (c) much larger than in (b)	E1		Any two points - maximum one if not in
	but still small. Probably OK just to hold			context.
	one bring-and-buy sale. Assumption of			
	independence in part (a) may be	E1	2	
	doubtful			
	Total		15	
	TOTAL		75	