ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Statistics 6380

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

\(\left.\begin{array}{lll}M \& mark is for method \&

\hline m or dM \& mark is dependent on one or more M marks and is for method

\hline A \& mark is dependent on M or m marks and is for accuracy\end{array}\right]\)| B | mark is independent of M or m marks and is for method and accuracy | |
| :--- | :--- | :--- |
| E | mark is for explanation | |
| Vor ft or F | follow through from previous
 incorrect result | MC |
| CAO | correct answer only | MR |

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

SS04

Q	Solution	Marks	Total	Comments

SS04 (cont)

Q	Solution	Marks	Total	Comments
2(b)(i)	$p=65 / 124=0.52419$	B1		0.524 (0.524 to 0.525) or 65/124
	90\% confidence interval	B1		1.6449 (1.64 to 1.65)
		M1		method for sd - their p
	$0.52419 \pm 1.6449 \sqrt{\left(\frac{0.52419 \times 0.47581}{10}\right)}$	m1		correct method - allow arithmetic mistakes and incorrect z
	$\sqrt{ }(124)$			0.450 (0.45 to 0.451) and 0.598
	0.52419 ± 0.07377			(0.597 to 0.599) or
	$0.450 \sim 0.498$	A1		0.524 (0.524 to 0.5245) and 0.0738 (0.0737 to 0.074)
	$p=11 / 124=0.08871$	B1		0.0887 (0.088 to 0.089) or 11/124
(ii)	90\% confidence interval	M1		method - allow arithmetic mistakes and
	$0.08871 \pm 1.6449 \sqrt{\frac{0.08871 \times 0.91129}{}}$	A1		incorrect z 0.047 (0.046 to 0.047) and
	$0.08871 \pm 1.6449 \sqrt{124}$	Al	8	0.047 (0.046 to 0.047) and 0.131 (0.13 to 0.131) or
	0.08871 ± 0.04200			0.0887 (0.088 to 0.089) and
	$0.047 \sim 0.131$			0.042 (0.0415 to 0.0425)
(c)	Evidence that more than 25% would say yes when increase is unspecified.	E1 \checkmark		more than 25% for unspecified increase
	Confirmed in (b)(i) when a small(10\%) increase is suggested but much less than	E1 \checkmark		confirmed for small increase
	25% in (b)(ii) when a large(40%) increase is suggested.	E1	3	but less for large increase
	Total		18	
3(a)	$\bar{x}=59.575 \quad s=4.5380$	B1		59.575 (59.5 to 59.6) and
	$\mathrm{H}_{0}: \mu=60$			4.538 (4.53 to 4.55)
	$\mathrm{H}_{1}: \mu \neq 60$	B1		one hypothesis - generous
		B1		both hypotheses - ungenerous
	$t=(59.575-60) /(4.538 / \sqrt{ } 8)$	M1		use of their $\mathrm{sd} / \sqrt{ } 8$
	$=-0.265$	m1		method - ignore sign
		A1		-0.265 (-0.26 to -0.27)
	cv $t_{7} \pm 1.895$	B1		7 df
		B1」		their df
	Accept $\mu=60$			
	No significant evidence to suppose the mean temperature at which sprinklers are activated is not $60^{\circ} \mathrm{C}$	A1 \checkmark	9	conclusion

SS04 (cont)

Q	Solution	Marks	Total	Comments
(b)(i)	Sprinklers set off unnecessarily causing mess and damage.	E2(1)		E2 for reason in context
(ii)	Sprinklers set off too late to prevent fire damage	E2(1)		E1 reason unconvincing or not in context
(iii)	Large standard deviation means temperature at which sprinklers set off is variable and so unpredictable	E2(1)		
(iv)	Testing is time consuming and expensive - may require sprinklers to be set off unnecessarily.	E2(1)	8	
	Total		17	
4(a)	$\mathrm{H}_{0}: \mu=8$	B1		both hypotheses - accept μ or
	$\mathrm{H}_{1}: \mu>8$			λ as implying population - generous
	$\begin{aligned} & \text { Poisson mean } 8 \\ & \begin{aligned} \mathrm{P}(16 \text { or more }) & =1-0.9918 \\ & =0.0082 \\ & <0.05 \end{aligned} \end{aligned}$	M1		attempt to calculate P (16 or more) generous
	Reject H_{0}; conclude there is significant evidence that the mean number of such	M1		method for P (16 or more) disallow normal approx
	emails received exceeds 8 per week	A1 $\mathrm{A} \mid \checkmark$		0.0082 (0.008 to 0.0082) conclusion - needs both M1s
	$\begin{aligned} \text { s.c. cr } & \geq 13 \text { nearest to } 5 \% \\ & \geq 14 \text { strictly less than } 5 \% \end{aligned}$	A1	6	A1 in context - needs previous A1 \checkmark
(b)	$\begin{aligned} & \mathrm{H}_{0}: \mu=8 \\ & \mathrm{H}_{1}: \mu<8 \end{aligned}$	B1		both hypotheses - accept $\mu=48$ etc
	6 weeks \rightarrow Poisson mean 48	B1		Poisson mean 8×6
	approximate by Normal, mean 48 standard deviation $\sqrt{ } 48=6.9282$	M1		attempted use of normal approx generous
		A1		mean 48 , sd $\sqrt{ } 48$
	$\begin{aligned} & z=(38.5-48) / \sqrt{ } 48=-1.37 \\ & \text { critical value }-1.6449 \end{aligned}$	M1		method for z - ignore sign and continuity correction
	Accept H_{0}; conclude no significant evidence that mean is less than 8 per week.	A1		$\begin{aligned} & -1.37(-1.365 \text { to }-1.375) \text { or } \\ & -1.44(-1.44 \text { to }-1.45) \text { if c.c. not } \end{aligned}$ used.
	$\begin{aligned} & \text { s.c. exact Poisson P(38 or fewer })= \\ & 0.0814(0.081 \text { to } 0.0815) \\ & p-\text { value using normal } 0.085 \end{aligned}$	B1 A1 \checkmark A1	9	1.6449 (1.64 to 1.65) -ignore sign conclusion - must be compared with lower tail of z in context - needs previous A1 \checkmark

SS04 (cont)

Q	Solution	Marks	Total	Comments
4(c)	Evidence that mean number of emails before changes was greater than 8 per week. Some evidence - but not significant - that number is now less than 8 per week. Conclude changes have lead to a reduction in emails of complaint.	E1 \checkmark	2	E1 $\checkmark>8$ before change E1 not greater than 8 now E1 some evidence but not significant less than 8 now E1 reduction maximum 2 if not in context maximum 1
	Total		17	
5(a)	$\begin{aligned} & z=(250-206) / 28=1.5714 \\ & \text { Probability }>250=0.0580 \\ & \text { normal mean } 412 \\ & \text { standard deviation } \sqrt{28^{2}+28^{2}}=39.598 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	3	method for z - ignore sign correct method 0.0580 (0.058 to 0.0583) 412 cao method for sd
(ii)	$z=(300-412) / 39.598=-2.828$ Probability profit insufficient $=1-0.99765=0.00235$	M1 m1		normal (may be implied) and method for z-ignore sign correct method
(c)(i)	$\begin{aligned} & \text { normal mean } 412 \\ & \text { standard deviation } 2 \times 28=56 \end{aligned}$	$\begin{aligned} & \text { A1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	5	$\begin{aligned} & 0.00235(0.0023 \text { to } 0.0024) \\ & 412 \text { cao } \\ & 56 \text { cao } \end{aligned}$
(ii)	$\begin{aligned} & z=(300-412) / 56=-2 \\ & \text { Probability insufficient }=1-0.97725 \\ &=0.02275 \end{aligned}$	M1 m1	5	normal (may be implied) and method for z-ignore sign correct method
		A1		0.02275 (0.0227 to 0.023)
(d)	Probability in (c) much larger than in (b) but still small. Probably OK just to hold	E1		Any two points - maximum one if not in
	one bring-and-buy sale. Assumption of independence in part (a) may be doubtful	E1	2	
	Total		15	
	TOTAL		75	

