Mark Schemes for the Units

January 2007

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2007
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annersley
NOTTINGHAM
NG15 0DL
Telephone: $\quad 08708706622$
Facsimile: $\quad 08708706621$
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Science (7885)
 Advanced Subsidiary GCE Science (3885)

MARK SCHEMES FOR THE UNITS

Unit	Content	Page
2841	Science and the Natural Environment	1
2842	Science and Human Activity	7
2844	Science and Environmental Management	13
$*$	Grade Thresholds	20

Mark Scheme 2841 January 2007

Abbreviations, annotations and conventions used in the Mark Scheme		
Question	Expected Answers	Marks
2 (a) (i) (ii) (b) (i) (ii) (c) (i) (ii) (iii) (iv) (v)	incident light bounced back / absorbed and re-emitted at same frequency off surface; pixel ; vegetation (accept forest) dry soil / sand (accept desert(s)) reflects only band C or infra red strongly ; because this senses vegetation; reflects all three bands strongly ; blue + red + green makes white light / white contains all colours ; because (terrain is) soil/sand any 2 of 3 points (ie max 2 marks) more white (extent or intensity) ora (no mark if reasoning is incorrect, ie apply 'con') red (ignore blue since candidates are given no information about the relative sensitivities of the three sensors) dense vegetation and hence intense colour / band C or infrared very strongly reflected emergent, canopy, sub-canopy (accept shrub layer, understory, undercanopy), forest floor 2 marks if all 4 correct 1 mark if 3 or 2 correct 0 if 1 or 0 correct Total: 13	1 1 1 1 1 2 1 2 1 2 2

Mark Scheme 2842 January 2007

Abbreviations, annotations and conventions used in the Mark Scheme		```/ = alternative and acceptable answers for the same = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain ecf = error carried forward AW = alternative wording ora = or reverse argument```	arking point credit
Question	Expected Answers		Marks
2 (a) (i)	Decreases; AW becomes closer to 7 Populations of plants / algae / plankton change; AW Fish die; AW shells of shellfish dissolve OVP		1
(ii)			1
(b) (i)	It has lost / donated / dissociated / ionised $\mathrm{An} \mathrm{H}^{+}$/ hydrogen ion (mention of molecule, atom is CON)		2
(ii)	$\mathrm{CO}_{3} ;{ }^{2-} ;$ NO_{2} / nitric acid and SO_{2} / sulphuric acid are strong(er) acids; Produce more $\underline{\mathrm{H}}^{ \pm}$ions AW gases are more soluble Higher concentration of $\underline{\mathrm{H}}^{ \pm}$in rain water AW lakes are not alkaline / do not have calcium carbonate present Nothing to neutralize the acids		2
(c)			2
(d) (i)	Scrubbers on chimneys Catalytic converters Lime lakes (No) Nowhere else to dump CO_{2} except in the sea / To much CO_{2} to dump / catalytic converters do not remove CO_{2} To much ocean to lime / ecf from answer to (d) (i) eg increased energy efficiency $=$ (yes) reduces total amount of CO_{2} released		
(ii)			1
			TOTAL: 10

Abbreviations, annotations and conventions used in the Mark Scheme		I $=$ alternative and acceptable answers for the sa NOT $=$ separates marking points NOT $=$ words which are not essential to gain credit () $=$ (underlining) key words which must be used $\overline{\text { ecf }}$ $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument	ng point dit
Question	Expected Answers		Marks
3 (a) (1)	Hydrogen atom		1
(ii)	Double (covalent) bond;		1
(iii)	There are three groups / pairs of electrons; groups of electrons / bonds repel to get as far away as possible; AW 120° gives minimum repulsion / are spaced out evenly		2
(b) (i)	Same n Same n AW quot Mention	mber of atoms on each side of the equation (=1 mark) ber of each type of atom (=2 marks) numbers of all types of atoms molecules is CON	2
(ii)	Oxidation		1
(c)	Activation energy (or equivalent statement) may be too high; Catalyst lowers the activation energy;		2
			TOTAL 9

Abbreviations, annotations and conventions used in the Mark Scheme		$\begin{array}{ll} \hline l & =\text { alternative and acceptable answers for the same ma } \\ ; & =\text { separates marking points } \\ \text { NOT } & =\text { answers which are not worthy of credit } \\ (\text {) } & \text { = words which are not essential to gain credit } \\ \overline{\text { ecf }} & =\text { (underlining) key words which must be used to gain } \\ \text { AW } & =\text { alternative wording } \\ \text { ora } & =\text { or reverse argument } \end{array}$	ing point redit
Question	Expected Answers		Marks
4 (a) (1)	Made up of many monomers / smaller molecules bonded together; Lighter / less likely to corrode / cheaper / transparent / easier to mould / OVP		1
(ii)			1
(iii)	Electron;		1
(b) (i)	$\mathrm{R}=\mathrm{V} / \mathrm{l}$		1
(ii)	$\begin{aligned} & 4 / 2 \times 10^{-3} \\ & 2 \times 10^{3} / 2,000 \mathrm{ecf} \end{aligned}$		2
(c) (i)	Decrease the length and increase the cross-sectional area;		1
(ii)	Resistance increases as resistivity increases; Relationship is proportional; AW gives correct relationship $\mathrm{R}=/ \sigma / \mathrm{A}$ (2 marks)		2
(d) (i)	Region of space; In which a magnetic force / torque is experienced;		2
(ii)	(Particle) with an unpaired electron NOT just "unpaired electron"		1
(iii)	When a current is flowing through it		1
			$\begin{aligned} & \text { TOTAL: } \\ & 13 \\ & \hline \end{aligned}$

Mark Scheme 2844 January 2007

Abbreviations, annotations and conventions used in the Mark Scheme	l $=$ alternative and acceptable answers for the same marking point $;$ $=$ separates marking points NOT $=$ answers which are not worthy of credit () $=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit $\overline{\text { ecf }}$ $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument	
Question 2	Expected Answers	Marks
a (i)	Vector / carries gene into cell	1
(ii)	Restriction enzymes; Cut DNA at specific base sequence;	2
(iii)	Gene also cut with restriction enzyme; Sticky ends; Joined with DNA ligase;	2
b	Antibiotic resistance (or other); Allows selection of bacteria which have taken up plasmid;	2
c	Cells infected by bacteria; Some plant cells take up gene; Testing for plants which contain new gene;	2
d	Produce varieties that are drought resistant; Pest resistant; Herbicide resistant; Bigger yields; More protein; increased shelf-life Any other sensible reason;	2
e	Decrease in biodiversity; Plants may be all susceptible to new diseases; Contamination of other crops by cross fertilisation; Possible unknown dangers to health through eating; expensive	1
f	Grow (a certain distance) away from other crops; Prevents (wind/insect) cross pollination;	2
	Total	14

Abbreviations, annotations and conventions used in the Mark Scheme	l $=$ alternative and acceptable answers for the same marking point $;$ $=$ separates marking points NOT $=$ answers which are not worthy of credit () $=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit $\overline{\text { ecf }}$ $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument	
Question 3		
a	Pollen from a flower on one variety brushed on stigma of second variety; Prevent self pollination by removing anthers; Plant seed and select for plants with desired characteristics; Repeat	3
b (i)	Potatoes produce tubers; Which are swollen roots / tips of rhizomes; Where food is stored; New plants develop from buds on surface NOT "eyes"	3
(ii)	All plants same genotype / no variation so; All susceptible to new diseases	2
c (i)	Gametes / male and female sex cells;	1
(ii)	Meiosis; 1st cell division produces 2 diploid cells as in mitosis; Followed by second cell division; Where chromosomes not replicated; One chromatic from each pair goes in separate cells; Results in 4 cells; May involve crossing over;	1 3 others
d	Dominant gene mask recessive; Phenotype will reveal dominant trait;	1
e (i)	Starchy;	1
(ii)	Suitable diagram; to show all offspring Aa	2
(iii)	Parents both Aa Correct offspring AA, Aa, Aa, aa; Correct phenotype ratios 75% starchy 25% waxy	3
	Total	20

Abbreviations, annotations and conventions used in the Mark Scheme	$\left.\begin{array}{ll}l & =\text { alternative and acceptable answers for the same marking point } \\ \text { NOT } & =\text { separates marking points }\end{array}\right]$Nanswers which are not worthy of credit ($)$ $=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit $\overline{\text { ecf }}$ $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument	
Question 4	Expected Answers	Marks
a	Polar / charged groups/ions	1
b	Polar/charged groups in components; Attracted to oppositely charged groups in components.	1
c (i)	Capillary / carried by solvent	1
(ii)	Some components highly soluble (in the mobile phase/solvent); Some components highly attracted to the stationary phase; The equilibrium is toward the mobile phase in the highly soluble components (or reverse argument for polar components); Movement of solvent (mobile phase) causes movement of molecules; Components more highly attracted to stationary phase move more slowly;	4
D (i)	Distance moved by component; divided by distance moved by solvent front;	2
(ii)	Distance depends also on temperature/ solvent/ length of time ; So would not be the same in all assays/may be different	2
(iii)	Rf 0.55; Rf the same	2
e(i)	Silicone oil / oily liquid; Inert gas / CO_{2} /helium / Nitrogen	2
(ii)	Keep sample vaporised / temp constant	1
(iii)	More volatile = more rapid/faster	1
	Total	17

Abbreviations, annotations and conventions used in the Mark Scheme	l $=$ alternative and acceptable answers for the same marking point $;$ $=$ separates marking points NOT $=$ answers which are not worthy of credit () $=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit $\overline{\text { ecf }}$ $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument	
Question	Expected Answers	Marks
5 a	Root cell membranes semi permeable; Water molecules small so can move through semi permeable membrane; lons etc too big so cannot move through; All molecules moving; Hitting both sides of semi permeable membrane; Water moves in and out of cells; If cell needs water, concentration of ions higher inside cell than outside / Water potential of cell higher inside / concentration of water higher outside; Net movement of water from high concentration of water to low concentration of water / from low to high water potential / from less concentrated solution of ions to less con concentrated; So water moves into cell: Pressure of water; Pushes against cell walls ;	7

QWC		4
b (i)	Reduced transpiration; wilting; close stomata; leaf firing; leaf rolling ie a rapid response	1
b ii)	Longer/deeper roots; small spiny leaves; leaf firing; leaf rolling; waxy cuticle 2 from above	2
C (i)	Too high concentration of; Sodium/chlorine/magnesium/calcium/sulphate ions; (allow one mark for too much salt)	2
C(ii)	Distillation; MED; multi stage flash distillation; reverse osmosis; freeze - melt; or any other method; NOT desalination	2
	Total	18

Advanced GCE Science 3885/7885
January 2007 Assessment Series

Unit Threshold Marks

Unit		Maximum Mark	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{u}
$\mathbf{2 8 4 1}$	Raw	60	46	41	36	31	26	0
	UMS	90	72	63	54	45	36	0
$\mathbf{2 8 4 2}$	Raw	60	46	41	36	31	26	0
	UMS	90	72	63	54	45	36	0
$\mathbf{2 8 4 4}$	Raw	90	69	61	53	45	37	0
	UMS	90	72	63	54	45	36	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{3 8 8 5}$	300	240	210	180	150	120	0
$\mathbf{7 8 8 5}$	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
$\mathbf{3 8 8 5}$	0.0	50.0	50.0	83.3	100.0	100.0	6
$\mathbf{7 8 8 5}$	100.0	100.0	100.0	100.0	100.0	100.0	1

7 candidates aggregated this series

For a description of how UMS marks are calculated see;
http://www.ocr.org.uk/exam system/understand ums.html
Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations)
 1 Hills Road
 Cambridge
 CB1 2EU
 OCR Customer Contact Centre

(General Qualifications)

Telephone: 01223553998
Facsimile: 01223552627
Email: helpdesk@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

