Please check the examination details below before entering your candidate information						
Candidate surname		Other names				
Pearson Edexcel Level 3 GCE	Centre Numb	ber Candidate Number				
Monday 18 May 2020						
Afternoon (Time: 2 hours)	Pape	er Reference 9PS0/01				
Psychology Advanced Paper 1: Foundations in Psychology						
You do not need any other ma	aterials.	Total Marks				

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- The list of formulae and statistical tables are printed at the start of this paper.
- Candidates may use a calculator.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

FORMULAE AND STATISTICAL TABLES

Standard deviation (sample estimate)

$$\sqrt{\left(\frac{\sum (x-\bar{x})^2}{n-1}\right)}$$

Spearman's rank correlation coefficient

$$1 - \frac{6\sum d^2}{n(n^2 - 1)}$$

Critical values for Spearman's rank

Level of significance for a one-tailed test

	Le	vei oi signiii	cance for a	nce for a one-tailed test						
	0.05	0.025	0.01	0.005	0.0025					
	Le	vel of signifi	of significance for a two-tailed test							
Ν	0.10	0.05	0.025	0.01	0.005					
5	0.900	1.000	1.000	1.000	1.000					
6	0.829	0.886	0.943	1.000	1.000					
7	0.714	0.786	0.893	0.929	0.964					
8	0.643	0.738	0.833	0.881	0.905					
9	0.600	0.700	0.783	0.833	0.867					
10	0.564	0.648	0.745	0.794	0.830					
11	0.536	0.618	0.709	0.755	0.800					
12	0.503	0.587	0.678	0.727	0.769					
13	0.484	0.560	0.648	0.703	0.747					
14	0.464	0.538	0.626	0.679	0.723					
15	0.446	0.521	0.604	0.654	0.700					
16	0.429	0.503	0.582	0.635	0.679					
17	0.414	0.485	0.566	0.615	0.662					
18	0.401	0.472	0.550	0.600	0.643					
19	0.391	0.460	0.535	0.584	0.628					
20	0.380	0.447	0.520	0.570	0.612					
21	0.370	0.435	0.508	0.556	0.599					
22	0.361	0.425	0.496	0.544	0.586					
23	0.353	0.415	0.486	0.532	0.573					
24	0.344	0.406	0.476	0.521	0.562					
25	0.337	0.398	0.466	0.511	0.551					
26	0.331	0.390	0.457	0.501	0.541					
27	0.324	0.382	0.448	0.491	0.531					
28	0.317	0.375	0.440	0.483	0.522					
29	0.312	0.368	0.433	0.475	0.513					
30	0.306	0.362	0.425	0.467	0.504					

The calculated value must be equal to or exceed the critical value in this table for significance to be shown.

Chi-squared distribution formula

$$X^{2} = \sum \frac{(O-E)^{2}}{E}$$
 $df = (r-1)(c-1)$

Critical values for chi-squared distribution

Level of significance for a one-tailed test

	0.10	0.05	0.0005							
	Level of significance for a two-tailed test									
df	0.20	0.10	0.05	0.025	0.01	0.001				
1	1.64	2.71	3.84	5.02	6.64	10.83				
2	3.22	4.61	5.99	7.38	9.21	13.82				
3	4.64	6.25	7.82	9.35	11.35	16.27				
4	5.99	7.78	9.49	11.14	13.28	18.47				
5	7.29	9.24	11.07	12.83	15.09	20.52				
6	8.56	10.65	12.59	14.45	16.81	22.46				
7	9.80	12.02	14.07	16.01	18.48	24.32				
8	11.03	13.36	15.51	17.54	20.09	26.12				
9	12.24	14.68	16.92	19.02	21.67	27.88				
10	13.44	15.99	18.31	20.48	23.21	29.59				
11	14.63	17.28	19.68	21.92	24.73	31.26				
12	15.81	18.55	21.03	23.34	26.22	32.91				
13	16.99	19.81	22.36	24.74	27.69	34.53				
14	18.15	21.06	23.69	26.12	29.14	36.12				
15	19.31	22.31	25.00	27.49	30.58	37.70				
16	20.47	23.54	26.30	28.85	32.00	39.25				
17	21.62	24.77	27.59	30.19	33.41	40.79				
18	22.76	25.99	28.87	31.53	34.81	42.31				
19	23.90	27.20	30.14	32.85	36.19	43.82				
20	25.04	28.41	31.41	34.17	37.57	45.32				
21	26.17	29.62	32.67	35.48	38.93	46.80				
22	27.30	30.81	33.92	36.78	40.29	48.27				
23	28.43	32.01	35.17	38.08	41.64	49.73				
24	29.55	33.20	36.42	39.36	42.98	51.18				
25	30.68	34.38	37.65	40.65	44.31	52.62				
26	31.80	35.56	38.89	41.92	45.64	54.05				
27	32.91	36.74	40.11	43.20	46.96	55.48				
28	34.03	37.92	41.34	44.46	48.28	56.89				
29	35.14	39.09	42.56	45.72	49.59	58.30				
30	36.25	40.26	43.77	46.98	50.89	59.70				
40	47.27	51.81	55.76	59.34	63.69	73.40				
50	58.16	63.17	67.51	71.42	76.15	86.66				
60	68.97	74.40	79.08	83.30	88.38	99.61				
70	79.72	85.53	90.53	95.02	100.43	112.32				

The calculated value must be equal to or exceed the critical value in this table for significance to be shown.

Mann-Whitney U test formulae

$$U_a = n_a n_b + \frac{n_a(n_a+1)}{2} - \sum R_a$$

$$U_b = n_a n_b + \frac{n_b (n_b + 1)}{2} - \sum R_b$$

(U is the smaller of U_a and U_b)

Critical values for the Mann-Whitney U test

								-								
	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
N _a																
$p \le 0.05$ (one-tailed), $p \le 0.10$ (two-tailed)																
5	4	5	6	8	9	11	12	13	15	16	18	19	20	22	23	25
6	5	7	8	10	12	14	16	17	19	21	23	25	26	28	30	32
7	6	8	11	13	15	17	19	21	24	26	28	30	33	35	37	39
8	8	10	13	15	18	20	23	26	28	31	33	36	39	41	44	47
9	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51	54
10	11	14	17	20	24	27	31	34	37	41	44	48	51	55	58	62
11	12	16	19	23	27	31	34	38	42	46	50	54	57	61	65	69
12	13	17	21	26	30	34	38	42	47	51	55	60	64	68	72	77
13	15	19	24	28	33	37	42	47	51	56	61	65	70	75	80	84
14	16	21	26	31	36	41	46	51	56	61	66	71	77	82	87	92
15	18	23	28	33	39	44	50	55	61	66	72	77	83	88	94	100
16	19	25	30	36	42	48	54	60	65	71	77	83	89	95	101	107
17	20	26	33	39	45	51	57	64	70	77	83	89	96	102	109	115
18	22	28	35	41	48	55	61	68	75	82	88	95	102	109	116	123
19	23	30	37	44	51	58	65	72	80	87	94	101	109	116	123	130
20	25	32	39	47	54	62	69	77	84	92	100	107	115	123	130	138

N_b

								N _b								
N _a	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
p ≤ 0.0	1 (on	e-tail	ed). <i>n</i>	< 0.0	2 (tw	o-tail	ed)									
5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
6	2	3	4	6	7	8	9	11	12	13	15	16	18	19	20	22
7	3	4	6	7	9	11	12	14	16	17	19	21	23	24	26	28
8	4	6	7	9	11	13	15	17	20	22	24	26	28	30	32	34
9	5	7	9	11	14	16	18	21	23	26	28	31	33	36	38	40
10	6	8	11	13	16	19	22	24	27	30	33	36	38	41	44	47
11	7	9	12	15	18	22	25	28	31	34	37	41	44	47	50	53
12	8	11	14	17	21	24	28	31	35	38	42	46	49	53	56	60
13	9	12	16	20	23	27	31	35	39	43	47	51	55	59	63	67
14	10	13	17	22	26	30	34	38	43	47	51	56	60	65	69	73
15	11	15	19	24	28	33	37	42	47	51	56	61	66	70	75	80
16	12	16	21	26	31	36	41	46	51	56	61	66	71	76	82	87
17	13	18	23	28	33	38	44	49	55	60	66	71	77	82	88	93
18	14	19	23 24	30	36	36 41	44 47	53	59	65		76	82	88	94	10
											70 75					
19	15	20	26	32	38	44 47	50 52	56	63	69 72	75	82	88	94	101	10
20	16	22	28	34	40	47	53	60	67	73	80	87	93	100	107	114
								N _b								
N _a	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
p ≤ 0.0	25 (o	ne-ta	iled),	<i>p</i> ≤ 0.	05 (tv	vo-ta	iled)									
5	2	3	5	6	7	8	9	11	12	13	14	15	17	18	19	20
6	3	5	6	8	10	11	13	14	16	17	19	21	22	24	25	27
7	5	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
8	6	8	10	13	15	17	19	22	24	26	29	31	34	36	38	41
9	7	10	12	15	17	20	23	26	28	31	34	37	39	42	45	48
10	8	11	14	17	20	23	26	29	33	36	39	42	45	48	52	55
11	9	13	16	19	23	26	30	33	37	40	44	47	51	55	58	62
12	11	14	18	22	26	29	33	37	41	45	49	53	57	61	65	69
13	12	16	20	24	28	33	37	41	45	50	54	59	63	67	72	76
14	13	17	22	26	31	36	40	45	50	55	59	64	67 75	74	78	83
15	14	19	24	29	34	39	44	49	54	59	64	70 75	75 01	80	85	90
16	15	21	26	31	37	42 45	47 51	53 57	59	64	70 75	75 01	81	86	92	98
17 10	17	22	28	34	39 42	45 40	51 55	57 61	63 67	67 74	75 80	81 86	87	93	99	10
18 19	18	24 25	30	36	42 45	48 52	55 50	61 65	67 72	74 70	80 85	86 02	93	99 106	106 113	112
צו	19	25 27	32 34	38	45	52 55	58 62	65 69	72 76	78	85	92	99	106 112	113	119

								N_{b}								
	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
N _a						_								_		
$p \leq 0.0$	05 (o	ne-ta	iled),	<i>p</i> ≤ 0.	.01 (tv	vo-ta	iled)									
5	0	1	1	2	3	4	5	6	7	7	8	9	10	11	12	13
6	1	2	3	4	5	6	7	9	10	11	12	13	15	16	17	18
7	1	3	4	6	7	9	10	12	13	15	16	18	19	21	22	24
8	2	4	6	7	9	11	13	15	17	18	20	22	24	26	28	30
9	3	5	7	9	11	13	16	18	20	22	24	27	29	31	33	36
10	4	6	9	11	13	16	18	21	24	26	29	31	34	37	39	42
11	5	7	10	13	16	18	21	24	27	30	33	36	39	42	45	48
12	6	9	12	15	18	21	24	27	31	34	37	41	44	47	51	54
13	7	10	13	17	20	24	27	31	34	38	42	45	49	53	56	60
14	7	11	15	18	22	26	30	34	38	42	46	50	54	58	63	67
15	8	12	16	20	24	29	33	37	42	46	51	55	60	64	69	73
16	9	13	18	22	27	31	36	41	45	50	55	60	65	70	74	79
17	10	15	19	24	29	34	39	44	49	54	60	65	70	75	81	86
18	11	16	21	26	31	37	42	47	53	58	64	70	75	81	87	92
19	12	17	22	28	33	39	45	51	56	63	69	74	81	87	93	99
20	13	18	24	30	36	42	48	54	60	67	73	79	86	92	99	105

The calculated value must be equal to or less than the critical value in this table for significance to be shown.

Wilcoxon Signed Ranks test process

- Calculate the difference between two scores by taking one from the other
- Rank the differences giving the smallest difference Rank 1

Note: do not rank any differences of 0 and when adding the number of scores, do not count those with a difference of 0, and ignore the signs when calculating the difference

- Add up the ranks for positive differences
- Add up the ranks for negative differences
- T is the figure that is the smallest when the ranks are totalled (may be positive or negative)
- N is the number of scores left, ignore those with 0 difference

Critical values for the Wilcoxon Signed Ranks test

Level of significance for a one-tailed test

	0.05	0.025	0.01
	Level of signif	ficance for a two-	tailed test
n	0.1	0.05	0.02
N=5	0	-	-
6	2	0	-
7	3	2	0
8	5	3	1
9	8	5	3
10	11	8	5
11	13	10	7
12	17	13	9

The calculated value must be equal to or less than the critical value in this table for significance to be shown.

BLANK PAGE

Answer ALL questions

	Allower ALL questions.
	SECTION A: SOCIAL PSYCHOLOGY
1	Mrs King asked her class of 29 students to stop talking whilst she explained to them what they were required to do during that lesson. The students did not follow the instruction given by Mrs King and continued talking.
	Using social impact theory, describe why the students ignored Mrs King's instruction and continued to talk.
	(Total for Question 1 = 2 marks)

- 2 Jake wanted to find out if people obeyed the 30 miles per hour (mph) speed restriction in his local town. He recorded the driving speed of 200 cars on a Saturday afternoon and plotted the data on a frequency distribution curve.
 - (a) Identify the measure of central tendency shown at data points **A**, **B** and **C** on the frequency distribution curve for Jake's data, shown in **Figure 1**.

(3)

A frequency distribution curve to show the driving speed of cars (mph) recorded on a Saturday afternoon

Figure 1

Measure of central tendency shown at data point A

Measure of central tendency shown at data point **B**

Measure of central tendency shown at data point **C**

(b) Interpret the data Jake gathered about driving speeds in his local town.							
	(1)						
	(Total for Ouestion 2 = 4 marks)						

3	Two netball teams were playing in the cup final of an international netball tournament. Several supporters from each team became aggressive and violent towards each other. The home team supporters chanted and shouted negative comments at the opposing team supporters, and some of them got into a fight.									
	Using realistic conflict theory, explain the behaviour of the netball team supporters.									
	(Total for Question 3 = 4 marks)									

4	In social psychology you will have learned about one of the following contemporary studies in detail: • Burger (2009)							
	Reicher and Haslam (2006)Cohrs et al. (2012).							
	Evaluate your chosen contemporary study in terms of reliability and validity.	(8)						
Ch	Chosen study							

(Total for Question 4 = 8 marks)
(Iotal for Question 4 = 8 marks)
TOTAL EOD SECTION A - 18 MARKS

BLANK PAGE

SECTION B: COGNITIVE PSYCHOLOGY

5	Becca is trying to memorise the name and location of different organs in the human body for a Biology test.
	Describe one feature of the working memory model (Baddeley and Hitch, 1974) that could help Becca revise effectively for her test.
	(Total for Question 5 = 2 marks)

6		g an example, o ng (1972).	describe what is r	neant by semar	ntic memory as pro	pposed by
	Tarvi	ig (1972).				(2)
	(b) Expla	iin one strengt	h of Tulving's (19	72) explanation	of long-term men	nory.
	(b) Expla	in one strengt	h of Tulving's (19	72) explanation	of long-term men	
	(b) Expla	in one strengt	h of Tulving's (19	72) explanation	of long-term men	
	(b) Expla	in one strengt	h of Tulving's (19	72) explanation	of long-term men	
	(b) Expla	in one strengt	h of Tulving's (19	72) explanation	of long-term men	

7 Charles investigated the influence of an interference task on recall from short-term memory.

The same participants had to recall a word list after an interference task (Condition A) and later recall a word list with no interference task (Condition B).

The results from Charles's investigation are shown in **Table 1**.

(a) Complete **Table 1** and calculate the Wilcoxon Signed Ranks test for Charles's study.

(4)

Participant	Recall after an interference task (Condition A)	Recall with no interference task (Condition B)	Difference	Rank	Rank if positive	Rank if negative
Α	8	12				
В	9	11				
С	6	12				
D	8	8				
Е	10	9				
F	10	11				
G	5	10				
Н	5	4				
	1	1		Total:		

Table 1
SPACE FOR CALCULATIONS

Wilcoxon T value

(b) Using the Wilcoxon T value that you calculated for 7(a), determine whether Charles's data were significant at p \leq 0.025 for a directional (one-tailed) hypothesis.	(1)
(Total for Question 7 = 5 ma	_

8	Assess whether case studies of brain-damaged patients are an effective method for investigating human memory.	
		(8)

(Total for Overtion 9 - 9
(Total for Question 8 = 8 marks)
TOTAL FOR SECTION B = 19 MARKS

SECTION C: BIOLOGICAL PSYCHOLOGY

	the other man was being too friendly towards his girlfriend. David got into a fight with the other man.	
	(a) Describe how evolution and natural selection could account for David's aggression.	
		(2)
•••••		
	(b) Explain one weakness of the role of evolution and natural selection as an	
	explanation of David's aggression	
	explanation of David's aggression.	(2)
	explanation of David's aggression.	(2)
	explanation of David's aggression.	(2)
	explanation of David's aggression.	(2)
	explanation of David's aggression.	(2)
	explanation of David's aggression.	(2)
	explanation of David's aggression. (Total for Question 9 = 4	

10 Lauren is a Psychology student at university. For her research project, Lauren wants to investigate whether aggression could be related to hunger. She has permission from her tutor to conduct her investigation on the university campus.
Describe how Lauren could use a correlational research method to investigate whether aggression could be related to hunger.
(Total for Question 10 = 4 marks)

11 Evaluate Freud's psychodynamic explanation of aggression.	(8)

(Total for Question 11 = 8 marks)
TOTAL FOR SECTION C = 16 MARKS

SECTION D: LEARNING THEORIES

12	When Arthur was three years old a chicken chased him and pecked at him. This
	frightened Arthur and made him cry, resulting in alektorophobia (a fear of chickens).

Identify the conditioned stimulus (CS) and conditioned response (CR) from the scenario.

Conditioned stimulus (CS)	
---------------------------	--

Conditioned response (CR)

(Total for Question 12 = 2 marks)

13 In your studies of learning theories you will have conducted a practical investigation.	
(a) Describe the procedure from your learning theories practical investigation.	(2)
	(3)

(b) Explain two improvements that you could make to your learning theories practical investigation.	
praesies in recordance in	(4)
1	
2	
(Total for Question 13 =	7 marks)

r t h h	Astrid has a fear of flying. She experienced a flight with heavy turbulence when returning from a holiday and since then has been unable to board a plane. Astrid has tried going on a flight simulator to help her with her fear of flying, however this made her panic and the simulator had to be stopped for Astrid to get off. Her friend is getting married overseas next year. Astrid wants to attend the wedding and will need to fly there, so she is considering systematic desensitisation to reduce her fear of flying.	
	Discuss how systematic desensitisation could be used to help Astrid with her fear of	
	lying.	(0)
		(8)

(Total for Question 1/1- 9 marks)
(Total for Question 14= 8 marks)
TOTAL FOR SECTION D = 17 MARKS

SECTION E: ISSUES AND DEBATES		
15 Assess how far learning theories have developed over time.		
	(8)	

(1	otal for Question 15 = 8 marks)
	The state of the s

16 Evaluate issues of social control from social and biological psychology.	(12)

(Total for Question 16 = 12 marks)
TOTAL FOR SECTION E = 20 MARKS

TOTAL FOR PAPER = 90 MARKS