Surname
Other Names

Centre Number

Candidate Number
2

GCE ASIA Level

2420U20-1 - NEW AS

PHYSICS - Unit 2
 Electricity and Light

P.M. THURSDAY, 9 June 2016

1 hour 30 minutes

ADDITIONAL MATERIALS

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	8	
2.	13	
3.	9	
4.	9	
5.	14	
6.	10	
7.	17	
Total	80	

In addition to this paper, you will require a calculator and a Data Booklet.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use pencil or gel pen. Do not use correction fluid.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this booklet. If you run out of space use the continuation pages at the back of the booklet taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The total number of marks available for this paper is 80 .
The number of marks is given in brackets at the end of each question or part-question.
You are reminded to show all working. Credit is given for correct working even when the final answer is incorrect.
The assessment of the quality of extended response (QER) will take place in Q7(b)(ii).

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Answer all questions

1. A simplified energy level diagram is given for a particular four-level laser system. Electrons are pumped (by means of infra-red radiation) from the ground state to level P, and drop to U, setting up a population inversion.
\qquad
level L 0.051 eV ground state 0
(a) (i) Calculate the wavelength of radiation emitted in the transition from level \mathbf{U} to level L.
\qquad
\qquad
\qquad
\qquad
(ii) Explain how stimulated emission enables amplification of infra-red radiation of this wavelength.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Explain the advantage of a four-level laser system over a three-level system.
\qquad
\qquad
\qquad
\qquad
2. (a) (i) Define the work function of a material.
(ii) When a potassium surface is irradiated with light of frequency $7.4 \times 10^{14} \mathrm{~Hz}$, electrons of maximum kinetic energy $1.2 \times 10^{-19} \mathrm{~J}$ are ejected at a rate of 2.0×10^{15} electrons per second.
I. Explain, in terms of photons, how, if at all, the maximum kinetic energy of the ejected electrons and their rate of ejection would change if a more intense light of the same frequency were used.
II. Determine whether or not electrons would be ejected from a potassium surface by light of frequency $5.1 \times 10^{14} \mathrm{~Hz}$. Give your reasoning.
(b) A beam of monochromatic light of wavelength, λ, and power, P, strikes an absorbing surface normally.
(i) Derive an expression for the number of photons, N, striking the surface per second, in terms of P, λ, h and c.
(ii) Hence derive an expression for the momentum change per second of the light when it strikes the surface.
\qquad
\qquad
\qquad
(iii) A student suggests that the answer to (ii) gives the pressure that the light exerts on
3. (a) A narrow beam of light is observed to refract as shown between clear plastic and air.

(i) Calculate the speed of light in the plastic.
\qquad
\qquad
\qquad
\qquad
(ii) Calculate the critical angle for light approaching air from the plastic.
 to the axis for successful transmission.

NOT TO SCALE

(i) The refractive index of the core is 1.530 . Calculate the refractive index of the cladding.
4. A beam of monochromatic light is shone normally (at right angles) on to a diffraction grating.
(a) Explain in clear steps why bright beams emerge from the grating at angles, θ, to the normal given by the equation:

$$
d \sin \theta=n \lambda
$$

(b) The angles, θ, at which the bright beams emerge are given in the table below.

Order, \boldsymbol{n}	θ (mean)	
0	0	
1	16	
2	35	
3	58	

(i) Plot a graph of $\sin \theta$ (y-axis) against n (x-axis) on the grid provided.

(ii) Use your graph to determine the wavelength of the light. The separation between the centres of slits in the grating is 1800 nm . Show your working.
5. (a) Define the potential difference between two points in an electric circuit.
(b) A cell of emf 1.62 V and internal resistance, r, is included in the circuit shown.

(i) State the expected reading on the voltmeter when the switch is open.
(ii) With the switch closed the voltmeter reads 1.38 V . Show in clear steps that the cell's internal resistance, r, is approximately 0.3Ω.
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) 750 J of the cell's energy is dissipated in total while the switch is closed. Calculate the time for which the switch is closed.

(i) Calculate the voltmeter reading when the resistance of the LDR is 850Ω and the switch is closed.
(ii) Explain, in clear steps, whether the voltmeter reading will increase or decrease when the intensity of light is increased.
\qquad
\qquad
\qquad
\qquad
6. (a) In the set-up shown a series of antinodes is detected, at the following distances from the metal plate: $8 \mathrm{~mm}, 24 \mathrm{~mm}, 40 \mathrm{~mm}, 56 \mathrm{~mm}, 72 \mathrm{~mm}$.

(1) Referring to the diagram, explain in terms of interference how an antinode is produced.
(ii) From the data, determine whether there is a node or an antinode at point \mathbf{P} (on the metal plate). Give your reasoning in terms of wavelength.
(b) Displacement-time graphs are given for two points, \mathbf{A} and $\mathbf{B}, 0.30 \mathrm{~m}$ apart, in the path of a progressive wave.

(i) State the phase relationship between the displacements at \mathbf{A} and \mathbf{B}, then determine the longest, and the second longest, wavelength that the wave could have.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) The speed of the waves is known to be between $10 \mathrm{~m} \mathrm{~s}^{-1}$ and $15 \mathrm{~ms}^{-1}$. Determine which of the two wavelengths in (b)(i) is the correct one, giving your reasoning. [3]
7. (a) (i) Draw the circuit diagram for an investigation of how the current through a filament
(ii) The lamp is labelled " $3 \mathrm{~V}, 0.16 \mathrm{~A}$ ". The ammeter to be used is a multimeter with a $0-200 \mathrm{~mA}$ range and a $0-10 \mathrm{~A}$ range. State which range should be selected, and justify your choice.
(iii) The lamp has already been investigated by a student, Sion, who plotted the graph reproduced below. State two ways in which his investigation (not his graph plotting) could have been improved.

(b)
(i) Use the graph to calculate the ratio:
$\frac{\text { Resistance of lamp at } 2.00 \mathrm{~V}}{\text { Resistance }}$
Resistance of lamp at 0.50 V

Examiner
(ii) Explain, in terms of free electrons, why the temperature and the resistance of a metal wire increase when the potential difference across the wire is increased.
(c) A scientist claims to have made a material which is superconducting at room temperature. He publishes his procedure. Several research teams try to follow the same procedure, but without success. Discuss the arguments for and against spending more public money following up the scientist's claim.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

$\begin{array}{\|l\|} \hline \text { Question } \\ \text { number } \\ \hline \end{array}$	Additional page, if required. Write the question number(s) in the left-hand margin.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

