UNIT 6482	Module 5	2.5.1	Energy of a Photon	•	PHOTON MODEL OF ELECTROMAGNETIC RADIATION 1
• <u>Candida</u> • Da el	tes should be able to : escribe the particulate nat ectromagnetic radiation.	ture (PH	OTON MODEL) of		Some effects, such as interference, diffraction and polarisation are only explicable by considering light to consist of waves (i.e. use a WAVE MODEL). Newton's explanations of reflection and refraction. on the other hand.
• 51 • 5e	tate that a photon is a QUANTU	M of energ	ny of electromagnetic radiation. of a photon :		assumed light to have a particle nature (i.e. use a PARTICLE MODEL). When it comes to explaining the PHOTOELECTRIC EFFECT (which we shall be considering shortly) we need to visualise electromagnetic radiation to consist of particles .
	E = hf and	E = <u>-</u>	hc A		So which is the true model ? Does light and all other electromagnetic radiation have a wave nature or does it have a particle nature ?
• De	efine and use the ELECTRONVOL	. T (eV) as	a unit of energy.		The answer is that both ideas are simply different ways of explaining how electromagnetic radiation behaves in different circumstances; neither is a perfect or full description.
• Us an De us ex	te the transter equation for elec d other charged particles. escribe an experiment using LEDs ing the equation eV = hc/A. (no kr pected).	trons s to estima nowledge o;	$eV = \frac{1}{2} mv^2$ te the PLANCK CONSTANT (h) f semiconductor theory is		• <u>PLANCK'S QUANTUM THEORY</u> (1900) proposed that electromagnetic radiation is emitted in very small, but separate bundles which he called QUANTA (the singular being a QUANTUM) Each PHOTON is a QUANTUM of electromagnetic energy
					Max Planck presents Albert Einstein with the Nobel Prize for his work on the photoelectric effect.
					FXA @ 2008

			•	Since c = f , the photon energy equation E = hf
	ESSENTIALS OF O	QUANTUM THEORY		may be expressed as :
•	Light and all other for radiation is emitted of energy.	orms of electromagnetic in brief ' bursts' or ' packe :		(J s) (speed of e.m. radiation in a vacuum = 3.0 x 10 ⁸ m s-1) E = hc
•	These packets of ele called PHOTONS an in one direction.	ctromagnetic energy are i d they travel in a straight	w ne	(J) (Photon wavelength in m)
·	When an atom emits by an amount equal to photon.	a photon, its energy chang o the energy of the emitte	5	Because the energy of a single photon is extremely
•	The ENERGY (E) of to the FREQUENCY given by the equation	a photon is directly propo (f) of the radiation and is 1:	ional S	small (e.g. it is 6.63 \times 10 $^{-16}$ J for an x-ray photon of frequency 10 18 Hz), we often use a smaller, more convenient unit, called the ELECTRONVOLT (eV) when dealing with photon energy.
		E = hf		1 ELECTRONVOLT (eV) is the energy gained by an electron when it moves through a potential difference of 1 VOLT .
	(PLANCK'S CON	(12) NSTANT = 6.63 x 10 ⁻³⁴ J s)		If an electron (charge, Q = e = 1.6 × 10 ⁻¹⁹ C) moves Through a pd of 1 v, the kinetic energy (E) gained is Given by :
	The unit of ' h' is rea photon of radiation of of energy.	lly J Hz⁻¹ which tells us that a of f = 1 Hz has 6.63 x 10 ⁻³⁴ J		$E = QV = (1.6 \times 10^{-19}) \times (1)$ So, $1eV = 1.6 \times 10^{-19} J$
				To convert eV to J multiply by 1.6×10^{-19} To convert L to all divide by 1.6×10^{-19}

UNIT 6482	Module 5	2.5.1	Energy of a Photon					
5 Calculat	e the energy in electronvo	o lt (eV) a	f:		ESTI	MATION OF PLANC	K'S CONSTANT (h)]
(a) An x (b) An ir	-ray photon of frequency nfrared photon of wavelen	1.5 ×10 ¹ gth 2.0 :	⁷ Hz. × 10 ⁻⁴ m.		<u>METHOD</u> The threshold of each of seve of different co	voltage (V) eral LEDs plour is	+ -	w voltage c. supply
6 (a) Thro a fin	ugh what pd must a proto al speed of 5.31 × 10⁵ m proton rest mass : proton charge :	n be acce s ⁻¹ ? G = 1.7 × 1 = + 1.60	lerated in order to reach ven that : O ⁻²⁷ kg. × 10 ⁻¹⁹ C.	ed t	In each case th reading is noted ammeter readin that the LED h	pposite. he voltmeter d when the ng shows as just start-) LED V	
(b) Assu 2 neu prote accel	uming that an alpha partic utrons) has twice the cha on, calculate the final spe lerated through the same	le (consis rge and 1 ed it wou pd as the	sting of 2 protons and four times the mass of a Id reach if it were to be proton in (a).		The wavelength Directly From ac	h of the light emitted y from the manufactu ctual measurements us Threshold voltage, V / V	by each LED can be of rer's quoted value, or sing a diffraction grat Wavelength, λ / m	ptained : ing. 1/λ / m−1
LIGHT-E	MITTING DIODE (LED)				L			
 An LED w. If to TF 	ill only allow current to pass thro is forward biased (i.e. when it i a supply as shown in the diagran he applied pd ≥ a minimum value o HRESHOLD VOLTAGE (V).	ough it when is connecte n opposite). called the	n : d		<u>ANALYSIS</u> So, Comparing with	eV = <u>hc</u> X V = (hc/e) h: y = mx	× 1/A (the equation of a s	traight line)
• LEDs of a conduct a emits high	different colours have differen nd emit light. A blue LED has a her energy photons.	t threshol d higher thre	l voltages at which they begin to eshold voltage than a red one and		It can be seen graph whose gr	that a graph of V aga radient (m) = hc/e.	iínst 1/A will give a sti	raight line
When an L	LED conducts and emits photons,	we can say	that :		From which :	Planck's const	tant, h = gradien	t x e/c
Energy	lost by an electron in passing thou <u>s</u>	gh the LED eV	= energy of the emitted photon = <u>hc</u> <u>J</u>					FXA @ 21

6482					
IT G482 Module 5		2.5.1	2.5.1 Energy of a Photon		
RACTICE	QUESTION (2)				
he results > estimate	shown in the tal the PLANCK CC	ole below were (DNSTANT (h).	obtained	n an experim	
LED Colour	Threshold Voltage, V / V	Emitted lig Wavelength, & /	ht 10 ⁻⁷ m	1/A / 10 ⁶ m ⁻¹	
green	2.30	5.60			
amber	2.00	6.10			
red	1.70	6.70			
infrare	d 1.35	9.10			
PLANCK PLANCK average Given th	CONSTANT, I value for h. at : charge on c speed of lig	n for each LED n electron, e = ght in a vacuum,	and hence 1.6 × 10 c = 3.0	value for the e obtain an) ⁻¹⁹ C × 10 ⁸ m s ⁻¹	
) Complete	e the table of re a graph of V ag	sults by calculd ainst 1/A and u	iting 1/X use the gr	tor each LED aph to obtain	

FXA © 2008

5