UNIT 6482	Module 4	2.4.2	Electromagnetic Waves	• ELECTROMAGNETIC WAVES AND THE ELECTROMAGNETIC SPECTRUM
 <u>Candidates should be able to</u>: State typical values for the wavelengths of the different regions of the electromagnetic spectrum from radio waves to gamma-rays. 		ngths of the different trum from radio waves	 An <u>ELECTROMAGNETIC WAVE</u> is a disturbance in the form of mutually perpendicular, oscillating electric and magnetic fields. They are regarded as <u>TRANSVERSE</u> waves because the oscillations are at right angles to the direction of travel 	
• S ir	State that all electromagne n a vacuum .	tic waves	s travel at the same speed	of the waves. They do NOT require a material medium for their transmission.
• D r	Describe differences and s begions of the electromagne	imilaritie etic spect	s between different trum.	Gamma-rays, x-rays, ultra-violet radiation, visible light, infra-red radiation, microwaves and radio waves are all part of the ELECTROMAGNETIC SPECTRUM, shown below.
• C	Describe some of the pract	ical uses	of electromagnetic waves.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
• D a	Describe the characteristic and UV-C radiations and ex	s and da xplain th	ngers of UV-A, UV-B e use of sunscreen.	10 ⁻¹⁰ A S A Y S S
• E u	Explain what is meant by pla nderstand the polarisation	nne-polar of elect	rised waves and Fromagnetic waves.	10 ⁻⁶
• E ti	Explain that polarisation is a ransverse waves only.	a phenom	enon associated with	
• 5	State that light is partially	polarise	d on reflection.	10 ⁴ RADIO WAVES
• R ///	Recall and apply Malus's law ight from a polarising filter	v for tra ^r .	nsmitted intensity of	

T G482	Module 4 2.4.2 Electromagnetic Waves					
The wavele diagram an there are r light is an e defined as	ength ranges for each o e only approximate and no hard and fast boundo exception to this, as th those which can be see	f the radiation show consider aries between t e visible wavele en by the humai	s shown in the able overlap as the regions. Visible engths are precisely n eye.	•	RA These are proc an alternating of and give out ra When a radio w electric and mo the electrons i	ADIO WAVES fuced by oscillating current flows in a co dio waves. wave interacts with o agnetic fields in the n the conductor, cau
WAVE T	TYPE SOURCES	DETECTOR	S PRACTICAL USES		constitutes an the radio wave. frequencies ma	alternating current Using tuned circu y be selectively am
Gamma-i	rays Radioactive nuclei	Photographic film Ionisation detecto	n Sterilisation rrs Medical imaging Medical treatment	•	Most of the bodies in the univ astronomy is the study of the great deal of information abou	
X-ray	'S X-ray tubes	Photographic film Ionisation detecto	n Medical imaging prs Medical treatment		bodies to be ob	otained.
Ultra-vie	olet Energy level changes of electrons in atoms	Fluorescent chemic Photographic fili	als Sterilisation n Suntanning Security marking			MICROWAVE
Visible I	ight Energy level changes of electrons in atoms	The eye Photographic fili	Signalling n Photography		T (
Infra-r	Thermal vibrations of atoms in hot bodies	Thermopile, bolome Photographic fili	ter Night-vision surveil- n lance systems Remote controls Cooking		waves, microwo the same wave Radio waves an magnetrons an	terable overlap betw aves and infra-red r length, they can be re produced by tune d infra-red by hot b
Microwa	Magnetrons and klys- trons	Antennae and tun circuits	ed Mobile phones Cooking Radar	•	The greatest a radar, but in re	pplication of microw
Radio Wa	aves Oscillating electrical charges	Antennae and tun circuits	ed Broadcasting radio and television Magnetic resonance imaging (MRI)		regular feature at a frequency cavity containin is the same as malecules in th	e of every kitchen. of 2.45 GHz deliver ng the food to be co the natural frequen e food and so cause
					to increase, re	sulting in an incred

Т

2

FXA © 2008

- lectrical charges. When ble, the electrons oscillate
- conductor, the alternating adio wave exert forces on ing them to oscillate. This f the same frequency as , particular oscillating ified.
- emit radio waves. Radio issions and it enables a nature of the emitting

5

- en the wavelengths of radio diation, but even if they have lifferentiated by their source. circuits, microwaves by dies.
- wes is in communications and e cookers have become a magnetron, typically operating microwave energy to the ked. This microwave frequency of vibration of the water their amplitude of vibration in the internal energy with a consequent rise in temperature.

NIT G482	Module 4	2.4.2 EI	ectromagnetic W	aves		
•	INFRA-RED (1 Emitted by all objects a zero (0 K ≈ -273°C). is the intensity and freq Because of its longer wa creatures can be disting out by cooler objects. Bu and thermal imaging cam beneath the rubble of co basis of IR wavelength of Light-emitting diodes (L work by emitting an IR b	(R) RADIATIO t temperatures h The hotter the o puency of the IR puelength, the IR purglar alarms, nig peras (used to loc ollapsed buildings differentiation. EDs) used in TV r beam of a specific	ON igher than absolute bject, the higher emitted by living background IR given ht-vision equipment ate people buried b) all work on the remote controls c frequency.		•	 Most of the solar UV incident on Earth is absorbed as it passes through the atmosphere and about 98% of that which reaches ground level is UVA. The remaining 2% is mainly UVB since most of the UVC is absorbed by the ozo layer. Most people who have suffered sunburn are aware of one of the effects of UV on humans, but there are other effected both damaging and beneficial. UVA, B and C cause damage to collagen fibres in skin which results in premature wrinkling and agein of the skin. UVB induces the production of vitamin D in the skin which may lead to skin cancer. High intensities of UVB can also lead to the formation of cataracts in the eyes.
•	ULTRA-VIOLET (This is e.m. radiation in a It is given the name ultr wavelengths shorter tha colour violet. There are three main su the Sun :	VIOLET (UV) RADIATION adiation in the wavelength range 10 to 400 nm e name ultra-violet because it consists of shorter than those which we identify as the ree main sub-types in the UV which comes from				 All UV types are potentially harmful to the eyes. SUNSCREENS are applied to the skin to protect people from the harmful effects of UV on the skin. Arc welders must protect their skin and eyes against the very intense UV produced in the welding process
	UV TYPE UVA (Long wave) UVB (medium wave)	WAVEI RA 320 nm 280 nm	LENGTH NGE to 400 nm to 320 nm			SUNGLASSES protect the eyes from the effects of UV which can lead to cataract formation in later life.
	UVC	100 nm	to 280 nm			FX

3

FXA © 2008

т

UNIT	G482
OINTI	0406

2.4.2 Electromagnetic Waves

• <u>ALL</u> ELECTROMAGNETIC WAVES :

Module 4

- Transfer energy from one place to another.
- Are transverse and can therefore be polarised.
- Obey the laws of **reflection** and **refraction**.
- Can be **superposed** to produce **interference** and **diffraction** effects.
- Have zero electric charge and are unaffected by electric, magnetic and gravitational fields.

• POLARISATION

- An <u>UNPOLARISED</u> wave is one which has vibrations in all directions at right angles to the direction of travel of the wave. (e.g. light from o bulb or the Sun)
- A <u>PLANE-POLARISED</u> wave is one in which the vibrations are in one plane only.

In the diagram opposite :

WAVE A is VERTICALLY polarised

WAVE B is HORIZONTALLY polarised.

The phenomenon of polarisation distinguishes **TRANSVERSE** waves from **LONGITUDINAL** waves in that :

TRANVERSE WAVES CAN BE POLARISED, BUT LONGITUDINAL WAVES CANNOT BE POLARISED.

This is because the vibrations in a longitudinal wave are along the direction of motion of the wave.

POLARISATION OF LIGHT USING POLAROID* FILTERS

Unpolarised light becomes polarised after it passes through a piece of polaroid. If A second polaroid with its axis of polarisation the same as the first is placed in the path of the polarised light, the light is transmitted.

* <u>POLAROID</u> is the trade name of a material which consists of long-chain molecules that absorb the energy from the electric field component of a light wave. A polaroid filter in which the molecules are arranged vertically will absorb vertically polarised light and transmit horizontally polarised light.

5

<text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text>	UNIT 6482	Module 4	2.4.2	Electromagnetic Waves	MALUS'S POLARISATION LAW
	 Sunlight and this unaware thought the posi PARTIL When lig example Reflecte wet road vehicles which m driving d This is e wearing polaroid arranged transmit light and glare wh been pai the hort 	is scattered as it comes polarises the light we ge of this polarisation, many to make navigational use tion of the Sun through a AL POLARISATION OF at is reflected from any it is partially polarised ad sunlight from a d surface and other can create a glare akes for difficult conditions. asily remedied by sunglasses. The in the glasses is d so that it will only vertically polarised it his greatly reduces ich is light which has tially polarised in izontal plane .	through a t from the y insects, of it by e cloud. REFLECT shiny sur in the ha	the Earth's atmosphere e sky. Although we are bees and some birds are nabling them to locate TED LIGHT face, such as water for forzontal plane.	This law, named after Etienne- When a perfect polariser is placed in the path of a placised light beam, the INTENSITY (I) of the transmitted light is given by: I = I_0 cos ² θ mild polarisation direction and the placiser is as of Data between the initial polarisation direction and the placer is a direction and the placer is a direc

UNIT G48	82	Module 4	2.4.2	Electromagnetic Waves	6	Name the type of electromagnetic radiation which corresponds 7		
HOMEWORK QUESTIONS						to each of the following wavelengths measured in a vacuum :		
1 Nam	e, in orde	r of increasing free	quency, the	ne main groups of		(a) 10 ⁻¹³ m, (b) 550 nm, (c) 1500 nm, (d) 4000 km, (e) 3 cm.		
grou	p, state :	• A source	e.	spectrum. For each	7	Using diagrams to illustrate your answers, explain :		
		A detectA typica	tor. I wavelen <u>g</u>	gth.		(a) What is meant by : (i) An unpolarised wave.		
2 Expl	ain why ra	idiations having the	same wa	velenath and properties		(ii) A plane-polarised wave.		
are g	given diffe	erent names.	Sume wu			(b) The effect of two 'crossed' polaroids on unpolarised light.		
3 Give and r	two simil radio wav	arities and two dif es.	ferences	between visible light	8	Vertically polarised light is incident on a piece of polaroid whose axis of polarisation is at 60° to the vertical . If the incident light intensity is 4.5×10^2 W m ⁻² , use Malus's law to calculate the intensity of the light after it passes through the polaroid .		
4 Stat wave	e the evic s are tra i	dence for the assun nsverse .	nption tha	t all electromagnetic				
5 Iden follo	tify the wing desc	type of electromag riptions :	gnetic rac	liation from each of the		Why is your answer likely to be somewhat greater than the value which would be obtained in practice ?		
(a) P	(a) Produces fluorescence in chemical dies used in washing powders.							
(b) P	(b) Produced by interactions of high-speed electrons with matter.				9	A polariser is slowly rotated in front of a beam of horizontally polarised light. The angle between the axis of the polariser and the		
(c) E	mitted by	most astronomical	bodies ar	nd used in cellular phones.		norizontal is 0.		
(d) H	lave high	penetrating power o	and origin	ate in the nuclei of atoms.		Using Malus's law , calculate the fraction of the incident light intensity transmitted through the polariser for 0-values taken at 20° intenvals between 0° and 180°		
(e) D	(e) Detectable by the human skin and used in remote controls.					20 miervais beiween 0 and 100.		
(f) P	(f) Produces suntan and can cause skin cancer.					Sketch a graph of fraction of light intensity transmitted against angle 0. Show values on both axes.		
						FXA © 2008		