

UNIT G482	Module 4	2.4.1	Wave Motion		CLASSIFICATION OF WAVES				2
- In each of the wave examples considered, the wave disturbance is initiated at a particular point and this sets the particles of the substance at that point into vibration. This causes neighbouring particles to vibrate in the same way and so the wave progresses through the substance. In the case of a single wave pulse initiated by an up and down movement of the end of a springy coil, the motion of the first ring causes the next ring to move and so on. In this way, the wave travels from one end of the coil to the other as shown in the diagram opposite. - All the waves considered so far are : PROGRESSIVE WAVES Waves which travel through a material or through a vacuum and transfer energy from one point to another.				- Waves can be : MECHANICAL \qquad OR ELECTROMAGNETIC Waves which need a substance for their transmission. (e.g. sound waves can be transmitted Through air, water and steel, but not Through a vacuum). EXAMPLES - Water waves - Sound waves - Waves along a spring coil or rope - Seismic waves Waves which DO NOT need a substance for their transmission (e.g. light waves travel from stars and galaxies travel through empty space to reach us here on Earth). EXAMPLES - Gamma-rays - $\quad X$-rays - Ultra-violet (UV) - Visible light - Infra-red (IR) - Microwaves - Radio waves					

| UNIT G482 | Module 4 | 2.4.1 | Wave Motion |
| :--- | :---: | :---: | :---: | | PERIOD (T) / second (s) |
| :--- | :--- |
| The time taken for one complete wave to pass a fixed point. |
| The time taken for one complete oscillation of a particle in |
| the wave. |

PHASE DIFFERENCE (Φ) / degrees or radians

The phase difference between two vibrating particles in a wave is the fraction of a cycle between the vibrations of the two particles.

Phase difference is measured in DEGREES or RADIANS.

```
1 cycle = 360 }=2\pi\mathrm{ radians
```


- In the diagram above, particles at points D and E which are one wavelength apart, vibrate in phase with each other. The phase difference between the partcles at these two points is 360° ($=2 \pi \mathrm{rads}$) (which is the same as 0°).
- Particles at points A and B which are $\frac{1}{2}$ a wavelength apart, vibrate in antiphase. The phase difference between the particles at these two points is 180° ($\pi \mathrm{rads}$).
- What is the phase difference between:
(a) Particles at points A and C ? \square
(b) Particles at points C and D? \square

The fact that the diffraction effect is more significant when the gap width is comparable to the wavelength of the incident waves enables us to explain why, in everyday life, We can observe diffraction for some types of wave but not for others.

Sound waves, for example, diffract as they pass through open doorways because their wavelengths are comparable to the size of the opening. This is why a person speaking in a corridor can be overheard in an adjoining room, in spite of the fact that there is a thick wall in the way.

In the aerial photograph shown opposite, sea waves are greatly diffracted as they pass through the gap between two large rocks. Again, the effect is observable because the wavelength is of the same order of magnitude as the

Light wave diffraction, on the other hand, is rarely observable in normal circumstances. This is because visible light wavelengths ($400-700 \mathrm{~nm}$) are tiny in comparison to the size of the gaps and objects we normally encounter.

When light from a laser is directed at a very narrow slit, it diffracts into the space beyond the slit to give the type of image shown in the photograph opposite.

With an adjustable gap, the effect of narrowing the gap
 can be investigated.
 gap width. the trpe of image shown in
ith an adjustable gap, the \square

UNIT G482	Module 4	2.4 .1	Wave Motion
- HOMEWORK QUESTIONS			
1(a) Describe the differences between transverse and longitudinal waves.			
(b) The diagram below shows a progressive longitudinal wave formed			
in a slinky spring by an oscillator connected to a signal generator.			

(i) Draw arrows to show the direction of the vibrations produced by the oscillator - Label these 'V'.
(ii) Label with a ' C ' the centre of a compression on the slinky.
(iii) Show the wavelength of the wave and label this ' Λ '.
(c) State and explain the effect on the wavelength of increasing the frequency of the oscillator.
(OCR AS Physics - Module 2823 - June 2005)
(a) State what is meant by the DIFFRACTION of waves.
(b) Draw diagrams to illustrate how plane water waves are diffracted when they pass through a gap: (i) About 2 wavelengths wide,
(ii) About 10 wavelengths wide.
(c) Suggest why the diffraction of light waves cannot usually be observed, except under laboratory conditions.
(OCR AS Physics - Module 2823 - June 2004)

3 (a) All waves are either longitudinal or transverse. State one example of each.
(b) Define: (i) The FREQUENCY of a wave.
(ii) The PERIOD of a wave.
(c) The diagram below shows the variation of displacement with position at a particular instant for a progressive wave travelling in air.

(i) State the amplitude of the wave shown in the diagram.
(ii) Describe the motion of an air particle at position A as one full cycle of the wave passes.
(iii) State one way in which the motion of an air particle at position B is similar to, and one way in which it is different from, the motion of an air particle at A as the wave passes.
(iv) Use the diagram to determine the wavelength of the sound wave.
(v) The speed of the sound wave is $340 \mathrm{~m} \mathrm{~s}^{-1}$. Calculate the frequency of the sound.
(OCR AS Physics - Module 2823 - January 2003)

4 The diagram below shows the displacement-time graph for a particle in a medium as a progressive wave passes through the medium.

(a) Determine from the graph :
(i) The AMPLITUDE of the wave.
(ii) The PERIOD of the wave.
(b) (i) What is the FREQUENCY of the wave?
(ii) The speed of the wave is $1500 \mathrm{~m} \mathrm{~s}^{-1}$. Calculate its WAVELENGTH.
(iii) Use the grid in the diagram shown below to sketch the displacement-position graph for the wave at a particular instant. Mark the scale on the position axis and draw at least two full cycles. (OCR AS Physics - Module 2823 - June 2004)

The diagram below shows, at a given instant, the surface of the water in a ripple tank when plane water waves are travelling from left to right.

(a) Copy the diagram and on your copy show :
(i) The AMPLITUDE of the wave - Label this ' A '.
(ii) The WAVELENGTH of the wave - Label this ' A '.
(b) On your copy of the diagram:
(i) Draw the position of the wave a short time, about 1/10th of a period, later.
(ii) Draw arrows to show the directions in which the particles at Q and S are moving during this short time.
(c) State the PHASE DIFFERENCE between the movement of particles at P and Q.
(d) The frequency of the wave is 25 Hz and the distance between P and Q is 1.8 cm . Calculate :
(i) The PERIOD of the wave.
(ii) The SPEED of the wave.
(e) (i) Suggest how the speed of the waves in the ripple tank could be changed.
(ii) The frequency of the wave source is kept constant and the wave speed is halved. State what change occurs to the wavelength.

