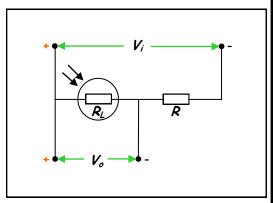

UNIT 6482	Module 3	2.3.2	Practical Circuits	•	POTENTIAL DIVIDER CIRCUIT 1
• D	ntes should be able to : raw a simple potential divi xplain how a potential divid variable pd.			•	SUPPLYING A FIXED PD The simplest potential divider circuit (shown opposite) is one which uses two resistors in series to give a smaller, fixed pd from a larger pd.
• D	ecall and use the potentia V _{out} = V _{in} x escribe how the resistance DR) depends on the inter	Ri (R1 +	R₂)		For the circuit shown, the current (I) through R_1 and R_2 is given by : $I = \frac{pd \ across \ the \ resistors}{total \ resistance} = \frac{V_i}{R_1 + R_2}$ pd across resistor $R_1 = V_o = IR_1 = \frac{V_i R_1}{R_1 + R_2}$ pd across resistor $R_2 = V_2 = IR_2 = \frac{V_i R_2}{R_1 + R_2}$
	escribe and explain the use p tential divider circuits .	e of ther	mistors and LDRs in		So, $\frac{V_o}{V_2} = \frac{V_i R_1 / (R_1 + R_2)}{V_i R_2 / (R_1 + R_2)} = \frac{R_1}{R_2}$
	escribe the advantages o hysical changes.	f using a	lata-loggers to monitor		Therefore, the ratio of the pds across each resistor is equal to the ratio of the resistances. The OUTPUT VOLTAGE or PD (V _o) across R ₁ is given by : $V_o = \frac{V_i R_1}{(R_1 + R_2)}$ FXA © 2008


• To the maximum value when it is equal to the INPUT PD (V_i) (sliding contact at position Y).

The OUTPUT VOLTAGE or PD (V_o) across R₁ is given by :

$$V_o = \frac{V_i R_1}{(R_1 + R_2)}$$
With the sliding contact at position X, R₁ = 0 Ω, so V_o = 0 V
With the sliding contact at position Y, R₁ = R (max. resistance of the variable resistor)
R₂ = 0 Ω, so V_o = $\frac{V_i \times R}{(R + 0)} = V_i$

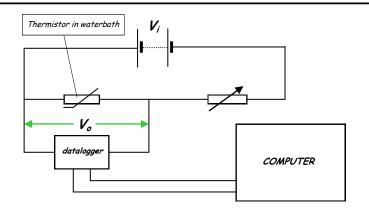
LIGHT-DEPENDENT POTENTIAL DIVIDER

The diagram opposite shows a light-dependent resistor (LDR) may be used In a potential divider to provide an output pd (V_o) which varies with light intensity.

An LDR is a resistor made from semiconducting material in which electrons are liberated when light shines on the surface of the material.

In <u>total darkness</u>, the only free electrons are those 'shaken' free by thermal vibrations of the atoms, so the LDR's <u>RESISTANCE IS VERY HIGH</u>.

As the <u>light energy incident on the LDR is increased</u>, more and more electrons are liberated and this means that the LDR's resistance becomes increasingly <u>LOWER</u>.

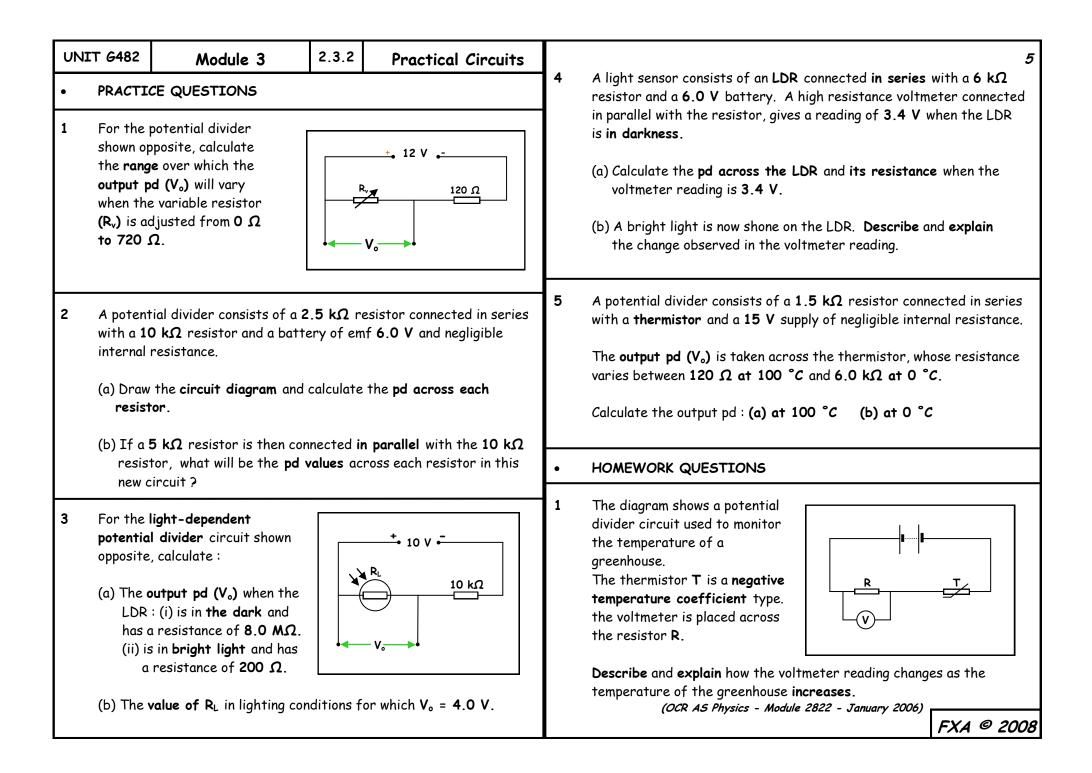


2

UNIT G4	482	Module 3	2.3.2	Practical Circuits	TEMPERAT	TURE-DEPENDENT P	OTENTIAL DIVIDER	3
The	e OUTP	UT PD (V _o) is given by V _o = <u>V</u> (R _L			whose resis	ISTOR is a device istance varies vith temperature.		
R L i. 50 1 As 1	is <u>LOW</u> the out the ligh	HT LIGHT (≈ 50 to 100 Ω) comp put pd (V _o) is <u>VERY S</u> at intensity <u>DECREASE</u>	MALL.		The resiste temperatu thermistor	aasing temperature : ance of a negative re coefficient (NTC) decreases.		
R _L i.	is <u>VER</u>)	IL DARKNESS • <u>Y HIGH</u> (≈ 10 MΩ) con put pd (V₀) has its <u>M</u>	•		thermistor		perature coefficient (PTC)	
coul At 1 stre to 0	ld be us the sim eet ligh operate	sed to control any proceed to control any proceed to control any proceed plest level, this could need to be the set of th	ess which nean autor 's. A swin -determin	ching circuit could be set ed value, corresponding to	For a NTC	V _o = <u>V</u> i I (R _T +		
resi at a wer	i stor, i a partic re set t	t would allow some man ular light intensity. So	ual adjusti , if for ex (_i , R could	replaced by a variable ment of the value of Vo ample, the street lights d be adjusted so that this n.		n the temperature is <u>i</u> d so V o will be <u>SMALL</u>	<u>HIGH</u> , R⊤is <u>SMALL</u> compared wi	th
incr	reases.	.	a circuit t	ease as the light intensity to set off an alarm when a in the lights on.		n the temperature is <u>i</u> d so V o will be <u>LARGE</u>	LOW, R _T is <u>LARGE</u> compared with	

	Practical Circuits	2.3.2	Module 3	NIT 6482				
USE OF DATALOGGER TO INVESTIGATE THE BETWEEN OUTPUT PD (Vo) AND TEMPERATO	switch on a heating system pertain value.	arm or to s e above a c ith a varial	ted to trigger a frost a to keep the temperatur the fixed resistor R w	circuit u in order Replacin				
V _o datalogger	d form part of a circuit	ivider could	ture. Such a potential of witch on an air-condition	tempera used to s				
	PHYSICAL CHANGES	ONITOR F	DATALOGGERS TO N	USE OF				
The circuit shown above may be used to it output pd (V _o) with temperature for a te potential divider.	f the relationship between	The design of commercial light or temperature-sensing potential - divider circuits requires a full knowledge of the relationship between the output pd (V_o) and either light intensity or temperature .						
The datalogger's temperature sensor (i.e. a water bath whose temperature is gradu electrically.	ed over a given time period.	A <u>DATALOGGER</u> is a small, portable electronic device which enables data from an external sensor to be recorded over a given time period. it can be interfaced with a computer which analyses the data and displays the information graphically.						
One of the datalogger inputs records the	ring physical changes are :	for monitor	ntages of a datalogger	The adva				
and the second input records the output two sets of continuously varying, correspondent	ver any desired period.	divider circuits requires a full knowledge of the re the output pd (V_o) and either light intensity or t A <u>DATALOGGER</u> is a small, portable electronic de data from an external sensor to be recorded over it can be interfaced with a computer which analyse						
computer, which then analyses the data a as a graph.	ocessed and displayed	nuously pro						

HE RELATIONSHIP TURE

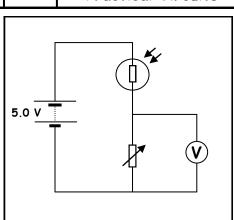


investigate the variation of temperature-dependent

e. the thermistor) is placed in lually increased by heating it

e changing water temperature P_{o} pd (V_{o}) of the circuit. The ponding readings are fed to a and displays the information

4



Module 3 2.3.2

2 The diagram shows a potential divider circuit. The voltmeter has a very large resistance and the battery may be assumed to have negligible internal resistance. For a particular intensity of

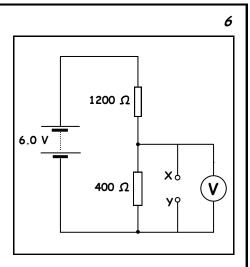
light, the resistance of the LDR is $2.4 \text{ k}\Omega$. The variable resistor is set on its maximum resistance of $4.7 \text{ k}\Omega$.

Practical Circuits

4

(a) Calculate the reading on the voltmeter.

(b) State how the answer to (a) changes when the light intensity is **decreased**.

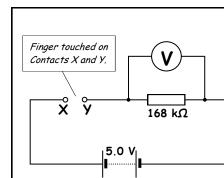

(OCR AS Physics part question - Module 2822 - May 2002)

- 3 The diagram shows a potential divider circuit designed as a touch sensor. The battery has **negligible** internal resistance and the voltmeter has **infinite** resistance.
 - (a) Explain why the voltmeter reading is zero when there is nothing connected between contacts X and Y.
 - (b) When the finger makes

contact between X and Y, the voltmeter reading changes from 0 V to 3.4 V because of the electrical resistance of the skin. Use this information to calculate the **electrical resistance of the skin** between the two contacts.

(OCR AS Physics - Module 2822 - June 2005)

- (a) Kirchhoff's first lawis based on the conservation of an electrical quantity. State the law and the quantity conserved.
- (b) The diagram opposite shows a potential divider circuit. The battery has negligible internal resistance and the voltmeter has very high resistance.



(i) Show that the voltmeter reading is 1.5 V.

- (ii) An electric device rated at 1.5 V, 0.1 A is connected between the terminals X and Y. The voltmeter reading drops to a very low value and the device fails to operate, even though the device itself is not faulty.
 - 1. Calculate the total resistance of the device and the 400 Ω resistor in parallel.
 - 2. Calculate the pd across the device when it is connected between X and Y.
 - 3. Why does the device fail to operate?

(OCR AS Physics - Module 2822 - January 2001)

FXA @ 2008

