

UNIT G482	Module 3	2.3.1	Series \& Parallel Circuits

This equation expresses KIRCHHOFF'S SECOND LAW (K2) which states that:

In any closed loop in a circuit, the sum of the emf's is equal to the sum of the pd's around the loop.

- As we have seen from our energy analysis of a simple circuit, If a unit charge follows a closed path in a circuit :

```
Total energy supplied = Total energy dissipated
    to the charge.
        by the charge.
```

i.e. KIRCHOFF'S SECOND LAW is a consequence Of the PRINCIPLE OF CONSERVATION OF ENERGY.

EXAMPLES OF THE USE OF KIRCHHOFF'S LAWS IN THE SOLUTION OF CIRCUIT PROBLEMS

(1) Use Kirchhoff's Law 2 to determine the current (I) in the circuit shown opposite.

```
Net emf = sum of the pd's
    E}-\mp@subsup{E}{2}{}=I\mp@subsup{R}{1}{}+I\mp@subsup{R}{2}{
    6-1.5 = (I +15) +(I\times30)
    4.5=45I
        I= 4.5
```


(2) Use Kirchoff's Laws to calculate the currents I_{1}, I_{2} and I_{3} in the circuit shown opposite

- Mark in the currents and label the closed loops ABCDEF as shown.
- Applying Kirchhoff 1 to point F

$$
I_{3}=I_{1}+I_{2} \ldots \ldots \ldots \ldots \ldots \ldots
$$

- Applying Kirchhoff 2 to loop FCDEF

$4=20 I_{3}$
So $\quad I_{3}=4 / 20$

$$
0.2 \mathrm{~A}
$$

- Applying Kirchhoff 2 to loop ABCFA

$$
\begin{aligned}
& 12=20 I_{3}+5 I_{1}=(20 \times 0.2)+5 I_{1}=4+5 I_{1} \\
& I_{1}=8 / 5=1.6 \mathrm{~A}
\end{aligned}
$$

- Substituting for $I_{1} \& I_{2}$ in equation (1)

$$
0.2=1.6+I_{2} \quad \text { So } \quad I_{2}=0.2-1.6=
$$

The negative sign tells us that I_{2} flows in a direction opposite to that chosen.
(3) The circuit diagram opposite shows a battery charger of emf 5.5 V and internal resistance 1.0Ω being used to recharge a cell of emf 1.2 V and internal resistance 0.20Ω.

Use Kirchhoff's Law 2 to determine the charging current I.

Applying Kirchhoff 2 to the loop

$$
\begin{aligned}
5.5-1.2 & =(I \times 1.0)+(I \times 0.20) \\
4.3 & =1.2 I \\
I & =4.3 / 1.2=3.58 \mathrm{~A}
\end{aligned}
$$

Consider three resistors of resistance R_{1}, R_{2} and R_{3} connected IN PARALLEL as shown opposite.

- According to Kirchhoff's Law 1
$I=I_{1}+I_{2}+I_{3}$.(1)
- \quad The pd across each resistor $=V$
- From the definition of resistance

$$
I=V / R
$$

And applying this to equation (1) :

$$
\begin{aligned}
\frac{V}{R_{T}} & =\frac{V}{R_{1}}+\frac{V}{R_{2}}+\frac{V}{R_{3}} \\
\text { From which: } \quad \frac{1}{R_{T}} & =\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
\end{aligned}
$$

For any number of resistors connected IN PARALLEL, the TOTAL RESISTANCE $\left(R_{T}\right)$ of the combination is given by :

$$
\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

- For resistors connected IN PARALLEL :
- The LOWEST value resistors carry the GREATEST proportion of the current.
- The TOTAL RESISTANCE of the combination is LESS than the SMALLEST resistance in the combination.
- SPECIAL CASE FOR RESISTORS IN PARALLEL

If (N) resistors having the same resistance (R) are connected IN PARALLEL, the TOTAL RESISTANCE $\left(R_{T}\right)$ is given by :

$$
R_{T}=\frac{R}{N}
$$

- PRACTICE QUESTIONS (2)

1 Calculate the total resistance of the resistor combinations shown below :
(a)

(b)

2 (a) What resistor value needs to be connected in parallel with a 20Ω resistor to give a combined total resistance of 10Ω ?
(b) You are provided with several 100Ω resistors. How could you combine the minimum number of these resistors to give a total resistance of 250Ω ?

3 You are provided with a 400Ω resistor and two 200Ω resistors. Calculate the total resistances which may be obtained by connecting some or all of these resistors in various combinations.

UNIT G482	Module 3	2.3.1	Series \& Parallel Circuits
A battery of emf (E) and internal resistance (r) was connected in series with a variable resistor of resistance (R) and an ammeter. the ammeter reading was 2.0 A when R was set to 4.0Ω and it dropped to 1.5 A when R was set to 6.0Ω, calculate the values of E and r.			

4 The pd across the terminals of a battery is found to be 3.0 V when it is measured using a very high resistance voltmeter. The battery is then connected to a 10Ω resistor and its terminal pd drops to 2.8 V. Calculate the internal resistance of the battery.
$5 \quad$ A high resistance voltmeter gives a reading of 1.5 V when connected to a dry cell on "open circuit". When the cell is connected to a lamp of resistance R, there is a current of 0.30 A and the voltmeter reading drops to 1.2 V. Calculate:
(a) The emf of the cell.
(b) The internal resistance of the cell.
(c) The value of the resistance R.

6 A car battery has an emf of 12 V and an internal resistance of 0 . 05Ω. The current drawn by the starter motor is 96 A .
(a) Calculate the terminal pd of the battery when the car is being started.
(b) If the headlamps are rated at $12 \mathrm{~V}, 36 \mathrm{~W}$, what is their resistance ?
(c) Calculate the value of their power output when the starter motor is in operation.

1 (a) On which conservation laws are Kirchhoff's first and second laws based?
(b) For the circuit shown opposite, calculate :

(i) The pd across the 125Ω resistor.

(ii) The pd across resistor R.
(iii) The resistance of resistor R.

2 (a) State Kirchhoff's Second Law.
(b) Apply Kirchhoff's Second Law to the circuit shown opposite to determine the current at point X.

3 You are given three resistors of resistance $4 \Omega, 6 \Omega$ and 8Ω. Using all the resistors draw the combination to give :
(a) The largest resistance.
(b) The smallest resistance.

In each case calculate the total resistance of the combination.

4 (a) State Kirchhoff's First Law.
(b) The diagram below shows part of an electrical circuit.

(i) Name the component marked X.
(ii) Determine the magnitude of the currents I_{1}, I_{2} and I_{3}.

$$
\text { (OCR AS Physics - Module } 2822 \text { - January 2004) }
$$

5 The results of an experiment to determine the emf (E) and internal resistance (r) of a power supply are given in the table below.

V/V	1.43	1.33	1.18	1.10	0.98
I/A	0.10	0.30	0.60	0.75	1.00

Plot a suitable graph and use it to find E and r.

The diagram below shows a circuit diagram including three resistors.

(a) The variable resistor is set on its maximum resistance of 20Ω.

Calculate the resistance between points:
(i) B and C.
(ii) A and C.
(b) In the circuit shown in the diagram above, the battery has negligible internal resistance and an emf of 5.0 V . The vaiable resistor is now set on its lowest resistance of 0Ω.

Calculate the reading on the ammeter.
(OCR AS Physics - Module 2822 - January 2006)

