UNIT G481	Module 3	1.3 .3	Power
- Candidates should be able to :			

POWER (P) is defined as the rate of work done or of energy transfer.

- Define POWER as the rate of work done.
- Define the WATT.
- Calculate power when solving problems.
- State that the EFFICIENCY of a device is always less than 100% because of heat losses.
- Select and apply the relationship for \% EFFICIENCY :

$$
\% \text { efficiency }=\frac{\text { useful output energy }}{\text { Total input energy }} \times 100 \%
$$

- Interpret and construct SANKEY diagrams.

- POWER (P)

- Energy can be transferred from one object to another by :
- WORK DONE,
- HEATING,
- ELECTRICITY, or
- WAVES.
- The POWER of any energy transfer process depends on how quickly a given amount of energy can be transferred. All timed athletic events are a 'power'struggle between the competitors. In all such events, the athlete is required to do the work needed to carry their body over a measured distance and the winner is the person who can perform the task in the shortest time. Of course, since their weight is different the amount of work done by each person will differ, so it is not strictly the most powerful athlete that will emerge the winner. The gold medal belongs to the athlete with the greatest
'power to weight ratio'.
- The unit of power is the WATT (W).

1 WATT (W) is defined as a rate of work done or of energy
transfer of 1 JOULE PER SECOND.

$$
1 W=1 J^{-1}
$$

We also use larger power units such as the KILOWATT (kW) and MEGAWATT (MW) and smaller units such as the MILLIWATT (mW).

$$
\begin{aligned}
& 1 \mathrm{~kW}=10^{3} \mathrm{~W} \\
& 1 \mathrm{MW}=10^{6} \mathrm{~W} \\
& 1 \mathrm{~mW}=10^{-3} \mathrm{~W}
\end{aligned}
$$

If ENERGY (E) is transferred in TIME (t), the POWER (P) is :

If the energy is transferred by a force doing WORK (W) in TIME (t), the POWER (P) is :

- NOTE: 'W' is used for both the WATT and WORK DONE. Take care not to confuse them!
P
\qquad

UNIT G48	Module 3	. 3	Powe
HUMAN BODY POWER The average daily food intake for a typical human being would give about 12 MJ of energy. This energy is used by the body to keep warm, to move about etc.. We can use this to estimate the average power used by a person in the course of a single day. $\text { average power }=\frac{\text { energy transferred }}{\text { Time }}=\frac{12 \times 10^{6}}{24 \times 60 \times 60} \approx 140 \mathrm{~W} .$			

So, the average human being dissipates energy at approximately the same rate as two 60 W light bulbs. Of course, this power value can be much greater when we are engaged in any kind of physical activity.

PRACTICAL ESTIMATION OF PERSONAL POWER

- A weight-training exercise such as the BENCH PRESS is performed 10 times using the maximum weight which the individual can comfortably manage. The time (t) taken to do all 10 repetitions is measured using a stopwatch.

- A steel tape measure is used to measure The height (h) through which the known weight (W) is moved for each repetition.
- Power $=\frac{\text { Work done }}{\text { Time taken }}=\frac{10 \times m g h}{t}=$ \qquad $=W$
- It should be noted that this is only a rough estimate. In order to simplify the determination, no account has been taken of :
- The work done against friction.
- The work done in the second half of each repetition as the weight is lowered to the starting position under gravity.

If a constant FORCE (F) is applied to an object and it does work by moving its point of application through a DISTANCE (s) in a TIME (t), then the POWER (P) is given by:

$$
\begin{aligned}
& \text { Power }=\frac{\text { work done }}{\text { time }}=\frac{\text { force } \times \text { distance }}{\text { time }} \\
& P=\frac{F \times s}{t}=F \times v \\
& \quad \begin{aligned}
P & =F v \\
\text { (W) } & \text { (N) }\left(m s^{-1}\right)
\end{aligned}
\end{aligned}
$$

PRACTICE QUESTIONS (1)

1 (a) An athlete delivers 24 kJ of energy as he goes through an exercise over a 2 minute period. What is his average power?
(b) Calculate the energy used by a $100 \mathbf{W}$ light bulb if it is left on all day.
(c) A racing car engine does 8500 kJ of work in 55 s . What is its output power?

2 A cyclist uses a dynamo to generate electricity for the lights on his bike. If the lights are rated at 4 W and he cycles for 1 hour, how much energy will he use up? Assume that no work is done against friction.

- Petrol Internal Combustion Engine

The Sankey diagram below shows that in an internal combustion engine only 25% of the chemical input energy is transformed into useful output energy. The remaining 75% is transformed into unwanted heat and sound. So this engine is 25% efficient.

2 A Premiership footballer is being tested for muscle efficiency. He pedals an exercise bike whose speedometer registers a speed of $12 \mathrm{~m} \mathrm{~s}^{-1}$ when the bike is generating a constant braking force of $45 N$.
(a) Calculate the useful power supplied by the footballer's muscles.
(b) If percentage muscle efficiency is 24%, calculate the total power supplied to the footballer's muscles.

3 A ship whose engine is developing a useful power output of 500 kW is cruising at a constant velocity of $6.0 \mathrm{~m} \mathrm{~s}^{-1}$. Calculate :
(a) The thrust exerted by the propeller on the water.
(b) The size of the force resisting the ship's forward motion.
(c) The power input if the engine efficiency is 30%.

UNIT G481	Module 3	1.3 .3	Power
- HOMEWORK QUESTIONS			

3 A small dinghy has an outboard motor with a propeller which is 20 cm in diameter. If the dinghy is tied to the quayside and the engine is started, the propeller forces back a stream of water at a speed of $6.0 \mathrm{~m} \mathrm{~s}^{-1}$.

Calculate the input power to the engine if it is 40% efficient and the density of sea water is $1.1 \times 10^{3} \mathrm{~kg} \mathrm{~m}-3$.
130 m and causes a water wheel to rotate. The rotating wheel is then used to produce 110 kW of electrical power.
(i) Calculate the velocity of the water as it reaches the wheel, assuming that all the gravitational potential energy is converted to kinetic energy.
(ii) Calculate the mass of water flowing through the wheel per second, assuming that the production of electrical energy is 100% efficient.
(iii) State and explain two reasons why the mass of water flowing per second needs to be greater than the value in (ii) in order to produce this amount of electrical power

$$
\text { (OCR AS Physics - Module } 2821 \text { - June 2004) }
$$

4 (a) Explain the concept of work and relate it to power.
(b) A cable car is used to carry people up a mountain. The mass of the car is 2000 kg and it carries 80 people, of average mass 60 kg . The vertical height travelled is 900 m and the time taken is 5 minutes.
(i) Calculate the gain in gravitational potential energy of the 80 people in the car.
(ii) Calculate the minimum power required by a motor to lift the cable car and its passengers to the top of the mountain.

2 A car of mass 1000 kg is moving on a horizontal road at a steady speed of $10 \mathrm{~m} \mathrm{~s}^{-1}$ against a constant frictional force of 400 N .
(a) Calculate the power output of the engine.
(b) The car now climbs up a hill inclined at 8° to the horizontal. Assuming that the frictional force remains constant at 400 N , calculate the new engine power required to maintain the $10 \mathrm{~m} \mathrm{~s}^{-1}$ speed.

