UNIT 6481	Module 3	1.3.2	Kinetic & potential Energy	•	KINETIC ENERGY (E _k) 1
• <u>Candidat</u>	ndidates should be able to :				This is the energy possessed by a moving object .
• Se	elect and apply the equation $E_k = rac{1}{2}mv$		netic energy :		KINETIC ENERGY = $\frac{1}{2} \times MASS \times SPEED^2$ $E_k = \frac{1}{2} m v^2$ $uelocity v$ $mass m$
1 · · · ·	oply the definition of work e change in gravitational		-		$(J) (kg) (m \ s^{-1})$ $DERIVATION \ OF E_k = \frac{1}{2} \ mv^2$
	elect and apply the equation tential energy near the E ΔEp = m	Farth's su	e change in gravitational urface :		$u = 0 \qquad \xrightarrow{a} \qquad \xrightarrow{v} \qquad \xrightarrow{F} \qquad \xrightarrow{m} \qquad\xrightarrow{m} \qquad $
	nalyse problems where the avitational potential ene r		-		Consider an object of mass (m) acted on by a constant force (F) which gives it a constant acceleration (a) , and increases its velocity from rest to a final value (v) over a distance (s) .
th	oply the principle of conse e speed of an object fallin eld.				kinetic energy gained by object, E_k = work done by force F E_k = force x distance moved in the force direction $E_k = F \times s$ E_k = mas (since F = ma) But $v^2 = u^2 + 2as = 2as$ (since $u = 0$) So $as = \frac{1}{2}v^2$ Therefore : $E_k = \frac{1}{2}mv^2$
					FXA © 2008

UNI	T G481	Module 3	1.3.2	Kinetic & potential Energy	• GRAVITATIONAL POTENTIAL ENERGY (E_p)	ź		
•	PRACTI	CE QUESTIONS (1)			• When an object is lifted to a higher position above the ground, work			
1	a brakin	cycle has <i>5 x 10⁴ J</i> of ki g force of <i>650 N</i> , calculat motorcycle.		rgy. If the brakes deliver <i>ortest stopping distance</i>	is done against the force of gravity and this transfers gravity potential energy to the object (Strictly speaking it is the Earth object system which gains gravitational potential energy).			
2		e the <i>increase in kinetic</i> accelerates from <i>10 m s</i> ⁻		f a vehicle of mass <i>1200 kg</i> 1 s ⁻¹ .	• GRAVITATIONAL POTENTIAL ENERGY (E_p) is the energy possessed by an object due to its position or height above the Earth.			
1		of mass 8.0 g is given 16 om a gun. Calculate the ve barrel.			DERIVATION OF $E_p = m g h$ Consider an object of mass (m)which is raised through height (h)			
		internet to find approxim owing and hence estimate o		•	above the ground. E_p gained = work done in lifting by object			
		loaded family car travellir nit.	ng along c	motorway at the speed	= force x distance moved = object weight x height Lifted = mg x h			
	• A	male Olympic 100 m sprin	ter.					
	• A	fully laden Jumbo jet airc	raft at n	ormal cruising speed.	Therefore : ground			
	• A	tennis ball served by a Wi	imbledon	champion.	Change in gravitational potential energy (E_p) is given b	y :		
		n electron travelling at 6.8 celerator.	8 × 10 ⁸ m	s ⁻¹ as it exits a linear	$E_p = mgh$			
	• Tł	ne Earth moving at its orb	ital speed	d around the Sun.				
					FXA @	2 201		

UNI	т 6481	Module 3	1.3.2	Kinetic & potential Energy			
• 1	An athlet starts at which is s	E QUESTIONS (2) e of mass <i>76 kg</i> runs up a point <i>200 m</i> above sea 950 m above sea-level. C ational potential energy	-level an Calculate	d finishes at the summit the athlete's increase	• The diagram above shows the cart at various positions on the roller coaster as well as the energy transformations which occur at each point.		
2	used to p	t has <i>25 J</i> of elastic ener roject a marble of mass , <i>mum height</i> reached by t	<i>5.0 g</i> ve he marb	rtically upwards, what is			
3	A ball of mass 0.25 kg drops from a height of 12 m and rebounds to a height of 8.5 m. Assuming negligible air resistance, calculate the energy lost on impact with the ground ($g = 9.81 \text{ N kg}^{-1}$).				 At the top of the first hill, the cart is momentarily stationary and only has E_p. As it accelerates down the slope it loses E_p and gains E_k (i.e. E_p is being transformed into E_k). 		
•	E_p - E_k TRANSFORMATIONS ON A ROLLER COASTER						
•	with an e transform potential and vice A motor of the fin the othen goes. Th	bulls the cart over the to rst hill. It then runs dow r side, accelerating as it e second hill is lower that	n the fir:		 At the bottom of the slope, the cart's initial E_p has been transformed into E_k. As it runs up the second hill, work is done against gravity and so the cart slows down. It loses E_k and gains E_p (i.e. E_k is being transformed into E_p). As the cart moves along, some of its kinetic energy is used to do work against friction and air resistance. Thus, some of the cart's kinetic energy is transformed into heat and sound energy and it is therefore unavailable for transformation into gravitational potential energy. For 		
	down the transferi	enough to make it over t second slope. The work red to gravitational poten med to kinetic energy as	done on ntial ene	the cart by the motor is rgy which is then	this reason, the cart cannot return to its original height and so the second hill must be lower than the first and the third must be lower than the second and so on.		

UNIT 6481

•

Module 3 1.3.2

Kinetic & potential Energy

- There are many other examples of Ep Ek transformation.
 - In the Winter Olympics **Ski Jump** competitors slide down a long snowcovered slope from a great height. E_p is transformed into E_k and this is used by the jumper to achieve the maximum possible jump distance.

• If an object is thrown upwards, its initial E_k is transformed into E_p as it rises and slows down. Eventually, when it reaches the maximum height, all the E_k is transformed into E_p (assuming zero air resistance).

In the case of an oscillating simple pendulum, there is a continuous interchange of E_p and E_k as the bob moves from $C \rightarrow A \rightarrow B \rightarrow A \rightarrow C$.

At *C* and *B* where the bob momentarily comes to rest, the bob has zero *Ek* and maximum E_p and at *A* where the bob is moving at its

maximum velocity, E_p is zero and E_k = mgh has its max value.

As we have seen in all the examples considered, when an object falls its E_p decreases and its E_k increases. Assuming no energy is lost in the process :

E_p lost = E_k gained

This relation can be used to solve a variety of problems, such as the **velocity** attained by an object when it falls from a given height.

Consider an object of mass (m) which Falls from a height (h) above the ground.

 $E_k gained = E_p lost$ $\frac{1}{2}mv^2 = mgh$

From which : $v = \sqrt{2gh}$

FXA @ 2008

UN:	IT G481	Module 3	1.3.2	Kinetic & potential Energy	•	HOMEWORK QUESTIONS	5	
•	PRACTIC	CE QUESTIONS (3)			1	 Describe the energy changes that occur in each of the following: (a) A cyclist freewheels from rest down a hill and then uses the brakes to stop at the bottom. (b) The bob on a simple pendulum is displaced from equilibrium with the thread taut and then released. The bob swings across to maximum displacement on the other side of the equilibrium position. 		
1	of gravit diver's gr energy d		iter surfo rgy is trai he veloci					
2	velocity	et of mass <i>0.75 kg</i> is proj of <i>12 m s⁻¹.</i> If it reach gy loss caused by air resis	es a heigl	nt of <i>6.75 m,</i> calculate	2	A rock falls from the top of a 75 m high cliff and strikes the ground at the bottom with a velocity of 35 m s⁻¹ . (a) What <i>percentage of the rock's initial gravitational potential</i> <i>energy</i> is transformed into kinetic energy as a result of the fall ?		
3	steel tab	ball bearing of mass <i>0.05</i> ble is released from rest o f <i>1.8 m.</i> Calculate :	-	-		(b) Explain what happens to the rest of the rock's initial energy.		
	(a) (b) (c)	The <i>gravitational poten</i>) The <i>kinetic energy</i> and before impact.) The <i>gravitational poten</i> bearing when it rebounds) The ball bearing's <i>rebou</i>	velocity of tial energy to a heig nd velocity	of the ball bearing just ny gained by the ball ght of 1.8 m .	3	The diagram opposite shows the vertical section through a ski track. A skier of mass 76 kg starts from rest at A. Assuming friction to be negligible, calculate : (a) The skier's velocity at point B. (b) The maximum horizontal distance (s) from point O that the skier reaches. FXA @ 20		

FXA © 2008

6