UNIT G481 \quad Module 3	- KINETIC ENERGY (E_{k}) 1
- Candidates should be able to : - Select and apply the equation for kinetic energy : $E_{k}=\frac{1}{2} m v^{2}$ - Apply the definition of work done to derive the equation for the change in gravitational potential energy. - Select and apply the equation for the change in gravitational potential energy near the Earth's surface: $\Delta E p=m g \Delta h$ - Analyse problems where there is an exchange between gravitational potential energy and kinetic energy. - Apply the principle of conservation of energy to determine the speed of an object falling in the Earth's gravitational field.	- This is the energy possessed by a moving object. $\text { KINETIC ENERGY }=\frac{1}{2} \times \text { MASS } \times \text { SPEED }^{2}$ (J) DERIVATION OF $\quad E_{k}=\frac{1}{2} m v^{2}$ Consider an object of mass (m) acted on by a constant force (F) which gives it a constant acceleration (a), and increases its velocity from rest to a final value (v) over a distance (s). kinetic energy gained by object, $E_{k}=$ work done by force F $E_{k}=$ force x distance moved in the force direction $E_{k}=F \times s$ $E_{k}=\operatorname{mas} \quad$ (since $F=m a$) But $v^{2}=u^{2}+2 a s=2 a s \quad($ since $u=0)$ so $a s=\frac{1}{2} v^{2}$ Therefore : $E_{k}=\frac{1}{2} m v^{2}$

UNIT G481		Module 3	1.3.2	Kinetic \& potential Energy		GRavitational potential energy (E_{p})		2
	PRACTICE QUESTIONS (1)				- When an object is lifted to a higher position above the ground, work is done against the force of gravity and this transfers gravitational potential energy to the object (Strictly speaking it is the Earthobject system which gains gravitational potential energy). GRAVITATIONAL POTENTIAL ENERGY $\left(E_{p}\right)$ is the energy possessed by an object due to its position or height above the Earth. DERIVATION OF $\quad E_{p}=m g h$ Consider an object of mass (m) which is raised through height (h) above the ground. E_{p} gained $=$ work done in lifting by object $\begin{aligned} & =\text { force } \times \text { distance moved } \\ & =\text { object weight } \times \text { height } \\ & \text { Lifted } \\ & =m g \times h \end{aligned}$ Therefore : Change in gravitational potential energy $\left(E_{p}\right)$ is given by : $E_{p}=m g h$			
1	A motorcycle has $5 \times 10^{4} J$ of kinetic energy. If the brakes deliver a braking force of 650 N , calculate the shortest stopping distance for the motorcycle.							
2	Calculate the increase in kinetic energy of a vehicle of mass 1200 kg when it accelerates from $10 \mathrm{~m} \mathrm{~s}^{-1}$ to $25 \mathrm{~m} \mathrm{~s}^{-1}$.							
3	A bullet of mass 8.0 g is given 160 J of kinetic energy when it is fired from a gun. Calculate the velocity of the bullet as it leaves the gun barrel.							
	Use the the fol	et to find app nd hence est family car \dagger lympic 100 m den Jumbo j ball served by ron travelling or. h moving at	ate mas value along er. raft at mbledon $\times 10^{8} \mathrm{~m}$ tal speed	s and speeds of each of their kinetic energy : motorway at the speed rmal cruising speed. hampion. ${ }^{-1}$ as it exits a linear around the Sun.				

UNIT G481	Module 3	1.3 .2	Kinetic \& potential Energy

- PRACTICE QUESTIONS (2)

1 An athlete of mass 76 kg runs up a hill in the Lake District. He starts at a point 200 m above sea-level and finishes at the summit which is 950 m above sea-level. Calculate the athlete's increase in gravitational potential energy ($g=9.81 \mathrm{~N} \mathrm{~kg}^{-1}$) .

2 A catapult has $25 J$ of elastic energy. If all its elastic energy is used to project a marble of mass 5.0 g vertically upwards, what is the maximum height reached by the marble?
(Take $g=9.81 \mathrm{Nkg}-1$).

3 A ball of mass 0.25 kg drops from a height of 12 m and rebounds to a height of 8.5 m . Assuming negligible air resistance, calculate the energy lost on impact with the ground ($g=9.81 \mathrm{~N} \mathrm{~kg}^{-1}$) .

- $E_{p}-E_{k}$ TRANSFORMATIONS ON A ROLLER COASTER

- A roller coaster provides us with an excellent example of transformations of gravitational potential energy to kinetic energy and vice versa.

A motor pulls the cart over the top of the first hill. It then runs down the other side, accelerating as it
 goes. The second hill is lower than the first and the cart is moving just fast enough to make it over the top and once again accelerate down the second slope. The work done on the cart by the motor is transferred to gravitational potential energy which is then transformed to kinetic energy as it speeds down the slope.

- \quad The diagram above shows the cart at various positions on the roller coaster as well as the energy transformations which occur at each point.
- At the top of the first hill, the cart is momentarily stationary and only has E_{p}.
- \quad As it accelerates down the slope it loses E_{p} and gains E_{k} (i.e. E_{p} is being transformed into E_{k}).
- At the bottom of the slope, the cart's initial E_{p} has been transformed into E_{k}.
- As it runs up the second hill, work is done against gravity and so
the cart slows down. It loses E_{k} and gains E_{p} (i.e. E_{k} is being transformed into E_{p}).

As the cart moves along, some of its kinetic energy is used to do work against friction and air resistance. Thus, some of the cart's kinetic energy is transformed into heat and sound energy and it is therefore energy is transformed into heat and sound energy and it is therefore
unavailable for transformation into gravitational potential energy. For this reason, the cart cannot return to its original height and so the second hill must be lower than the first and the third must be lower than the second and so on.

UNIT G481	Module 3	1.3 .2	Kinetic \& potential Energy
- PRACTICE QUESTIONS (3)			

2 An object of mass 0.75 kg is projected vertically upwards with a velocity of $12 \mathrm{~m} \mathrm{~s}^{-1}$. If it reaches a height of 6.75 m , calculate the energy loss caused by air resistance (Take $g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$).

3 A steel ball bearing of mass 0.05 kg at a height of 2.0 m above a steel table is released from rest and it is found to rebound to a height of 1.8 m . Calculate :
(a) The gravitational potential energy lost during the fall.
(b) The kinetic energy and velocity of the ball bearing just before impact.
(c) The gravitational potential energy gained by the ball bearing when it rebounds to a height of 1.8 m .
(d) The ball bearing's rebound velocity.

$$
\text { (Take } g=9.81 \mathrm{~m} \mathrm{~s}^{-2} \text {). }
$$

(a) A cyclist freewheels from rest down a hill and then uses the brakes to stop at the bottom.
(b) The bob on a simple pendulum is displaced from equilibrium with the thread taut and then released. The bob swings across to maximum displacement on the other side of the equilibrium position.

2 A rock falls from the top of a 75 m high cliff and strikes the ground at the bottom with a velocity of $35 \mathrm{~m} \mathrm{~s}^{-1}$.
(a) What percentage of the rock's initial gravitational potential energy is transformed into kinetic energy as a result of the fall?
(b) Explain what happens to the rest of the rock's initial energy.

3 The diagram opposite shows the vertical section through a ski track.

A skier of mass 76 kg starts from rest at \boldsymbol{A}.

Assuming friction to be negligible, calculate :
(a) The skier's velocity at point B.
(b) The maximum horizontal distance (s) from point O that the skier reaches.

UNIT G481 Module 3 1.3.2 Kinetic \& potential Energy	6
4 A toy car of mass 0.50 kg is released from point \boldsymbol{A} on a frictionless track. Calculate the car's: (a) Kinetic energy at point B. (b) Velocity at point B. (c) Gravitational potential energy at point C. (d) Kinetic energy at point C. (e) Velocity at point C. (Take $g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$).	
5 A roller coaster cart of total mass 1500 kg moving with an initial velocity of $2 \mathrm{~m} \mathrm{~s}^{-1}$ descends through a height of 70 m to reach a velocity of $36 \mathrm{~m} \mathrm{~s}^{-1}$ after travelling a distance of 120 m along the track. (a) Calculate: (i) Its loss of gravitational potential energy. (ii) Its gain of kinetic energy. (b) Show that the average frictional force acting on the cart during the descent was 500 N .	

