

- Vectors acting at any angle

Obtaining the RESULTANT by scale drawing

- \quad Choose a suitable scale (In this case say $1 \mathrm{~cm}=5 \mathrm{~N}$).

Draw a vector to represent the 15 N force (a horizontal line which is 3 cm long). (a vertical line which is 8 cm long) with its tail starting The RESULTANT is the vector which closes the triangle. of the vector and its direction is obtained using a protractor. Try this yourself.

- The scale drawing method we have used is called the TRIANGLE OF VECTORS. The three forces involved form a closed triangle.
- \quad Vector addition can be used to solve problems involving more Than three vectors and the method is then called the POLYGON OF VECTORS.

UNIT G481	Module 1	1.1 .2	Scalars \& Vectors
	PRACTICE QUESTIONS (2)		
1	A spider runs along side OA of a table and then does a 90 turn and runs along side $\boldsymbol{A B}$ (see diagram opposite).		
Calculate the magnitude and direction of its displacement.			

2 An aircraft flies 20 km due east and then 30 km north-east.

Use a scale diagram to determine the magnitude and direction of the
 aircraft's final displacement
($1 \mathrm{~cm}=5 \mathrm{~km}$ is a suitable scale).
3 (a) (i) Explain the difference between scalar and vector quantities.
(ii) Which of the quantities shown below are vector quantities? Acceleration energy force power speed
(b) Use a vector diagram drawn to scale to determine the magnitude and direction of the two forces shown in the diagram opposite.

4 A girl travels down a pulley-rope system which has been set up between two large trees. The picture opposite shows the girl at a point on her run where she
 has come to rest.
All the forces acting on the pulley wheel are shown in the diagram opposite.
(a) Explain why the vector sum of the three forces must be
 equal to zero.
(b) (i) Sketch a labelled vector triangle of the forces acting on the pulley wheel.
(ii) Use a scale diagram to determine the tension forces T_{1} and T_{2} which the rope exerts on the pulley wheel.
(OCR Module 2821-June 2005)
5 The diagram opposite shows a boy on a sledge (Total weight $=600 \mathrm{~N})$ sliding at constant speed down a slope inclined at 35° to horizontal. The second diagram shows all the
 forces acting on the boy and sledge.
(a) Use a scale drawing to determine:
(i) The magnitude of the resistive force R,

(ii) The component of the weight that acts at 90° to the slope.
(b) Explain why the boy and sledge are travelling at constant speed.
(OCR Module 2821-June 2003)

	T G481	Module 1	1.1.2	Scalars \& Vectors
-	PRACTICE QUESTIONS (3)			
1	An athlete throws a javelin into the air at an angle of 38° to the horizontal. If the initial horizontal component of the javelin's velocity is $19.7 \mathrm{~m} \mathrm{~s}^{-1}$, calculate: (a) The initial velocity of the javelin. (b) The initial vertical component of the javelin's velocity.			
2	A shell is fired from a gun at $400 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of 30° to the horizontal. (a) What is the initial horizontal component of the shell's velocity? (b) If the shell is in the air for $40 s$ and the ground is horizontal, how far does it land from its original position? (Assume that air resistance is negligible).			
3	The diagram opposite shows the forces exerted by three tugs which are being used to move a floating oil platform.			

The diagram above shows a boy on a sledge (Total weight $=600 \mathrm{~N}$) sliding at constant speed down a slope inclined at 35° to horizontal.

By resolving the forces acting on the boy and sledge, determine :
(a) The magnitude of the RESISTIVE FORCE (R).
(b) The component of the WEIGHT (W) that acts perpendicular to the slope.
(NOTE: You have already attempted this question by scale drawing)

5 A girl travels down a pulley-rope system which has been set up between two large trees. The picture opposite shows the girl
 at a point on her run where she has come to rest.
All the forces acting on the pulley wheel are shown in the diagram opposite.

By resolving the forces acting, determine the tension forces
 T_{1} and T_{2} which the rope exerts on the pulley wheel.
(NOTE: You have already attempted this question by scale drawing)

The diagram above shows the path followed by a car as it travels around a right-angled bend. The car travels from point \boldsymbol{A} to point \boldsymbol{B} in 7.6 s at a constant speed of $25 \mathrm{~m} \mathrm{~s}^{-1}$.
(i) Calculate the distance travelled by the car in 7.6 s .
(ii) Sketch the diagram and draw a line to show the DISPLACEMENT of the car having travelled from \boldsymbol{A} to B.
(iii) Explain why the velocity of the car changes as it travels from A to B although the speed remains constant.
(iv) Using a labelled vector triangle, calculate the magnitude of the change in velocity of the car.
(OCR Module 2821 - June 2004)

The diagram opposite shows three forces in equilibrium.
Determine the magnitude of the
forces F_{1} and F_{2} :
(a) Using a scale drawing.
(b) By calculation.

The diagram above shows a weight of 50 N hanging from the centre of a piece of string.

Use the process of RESOLVING to calculate the tension (T) in the string.

5 A boat moves forward at $10.0 \mathrm{~m} \mathrm{~s}^{-1}$. A sailor walks at a speed of $3 \mathrm{~m} \mathrm{~s}^{-1}$ across the deck at an angle of 60° to the boat's direction of motion. Calculate :
(a) The forward component of the sailor's velocity relative to the boat.
(b) The sailor's total forward velocity.

