1.	(a)	(i)	$E = (Pt =) 36 \times 3600$	
			allow $I = 3 A$ and $E = VIt$, etc.	
				C1

$$= 1.3 \times 10^{5} \, \text{(J)}$$

accept 129600 (J)

(ii)
$$Q = E/V = 1.3 \times 10^{5}/12$$
 or $Q = It = 3 \times 3600$
ecf (a)(i) C1

$$= 1.1 \times 10^4$$

accept 1.08 × 10⁴

allow A s not
$$J V^{-1}$$

(iii)
$$Q/e = 1.1 \times 10^4 / 1.6 \times 10^{-19}$$

ecf (a)(ii) C1

$$= 6.9 \times 10^{22}$$

accept 6.75 or 6.8 × 10²² using 10800 A1

(b)	(i)	no mark for quoting formula	
		the average displacement/distance travelled of the electrons <u>along the wire</u> per second;	
		allow in one second	B1
		(over time/on average) they move slowly in one direction through the metal/Cu lattice (when there is a p.d. across the wire);	B1
		(because) they collide constantly/in a short distance with the lattice/AW	
		max 2 marks from 3 marking points	B1

(ii)	select I = nAev (= 3.0 A) 1 mark for correct formula	C1	
	$v = 3.0/8.0 \times 10^{28} \times 1.1 \times 10^{-7} \times 1.6 \times 10^{-19}$		
	1 mark for correct substitutions into formula	C1	
	$= 2.1 \times 10^{-3} (\text{m s}^{-1})$		
	1 mark for correct answer to 2 or more SF	A1	1401
			[12]
$\rho = RA/l$			
	full word definition gains both marks	M1	
with terms	defined	1411	
	allow A is area as adequate; no unit cubes	A1	[2]

5.	(a)	(i)	either the cable consists of (38) strands <u>in parallel;</u> or the area of the cable is 38 times the area of a strand or vice versa;	
			max 1 mark for $38 \times 0.052 = 1.98$ with no further explanation allow with either and or	
				B 1
			so the resistance of 1 strand is 38 times bigger, (i.e. $1.98 \ \Omega \ \text{km}^{-1}$) or the resistance is inversely proportional to the area	
			allow only with or	B1
		(ii)	$A = \rho I/R = 2.6 \times 10^{-8} \times 1000/2.0$	
			allow 1 mark max. for $R = 0.052$ giving	
			$A = 5.0 \times 10^{-4} \ (m^2)$	
				C1
			$= 1.3 \times 10^{-5} (\mathrm{m}^2)$	
			give 1 mark max. for $1.3 \times 10^{-8} (m^2)$	
				A1

2.

3.

(b)	(i)	$P = VI = 400 \times 10^3 \times 440$	
		P = VI not adequate for first mark	C1
		$= 1.8 \times 10^8 \text{ (W) or } 180 \text{ M(W)}$	
		expect 176	A1
	(ii)	2000/176 = 11.4 so 12 required	
		ecf(b)(i); using 180 gives 11.1	B1
	(iii)	$\mathbf{P} = \mathbf{I}^2 \mathbf{R}$	
		<i>accept power/cable</i> = 2000/12 = 167 <i>MW</i>	C1
		$=440^2 \times 0.052$	
		I = 167M/400k = 417 A	C1
		$= 1.0 \times 10^4 \text{ W (km^{-1}) or 10 kW (km^{-1})}$	
		$P = 417^2 \times 0.052 = 9.0(3) \ kW \ (km^{-1})$	A1
		N.B. answer mark includes consistent unit	
	(iv)	power lost per cable = 10 k × 100 × 12 = 12.0 MW <i>ecf(b)(ii)(iii)</i>	61
		fraction remaining = $(2000 - 12)/2000 = 0.994 \times 100 = 0.994$ so 99.4% or power lost per strand = 10 k ×100 = 1.0 MW fraction remaining = $(176 - 1)/176 = 0.994$ so 99.4%	CI
		allow second mark for 'correct' answer as fraction not	
		percentage with BOD sign allow 1 mark max. if give correct % lost given rather than %	
		remaining allow 1 mark max. for 100 × (2000 – 1)/2000 = 99.95%	4.1
			AI
(a)	resis	tors in series add to 20 Ω and current is 0.60 A	
		accept potential divider stated or formula	B1

so p.d. across XY is
$$0.60 \times 12 (= 7.2 \text{ V})$$

gives (12/20) × 12 V (= 7.2)V
B1

4.

[12]

	(b)	(i)	the resistance of the LDR decreases	M1	
			(so total resistance in circuit decreases) and current increases	A1	
		(ii)	resistance of <u>LDR and 12 Ω</u> (in parallel)/ <u>across XY</u> decreases	B1	
			so has smaller share of supply p.d. (and p.d. across XY falls) alternative I increases so p.d. across 8.0 Ω increases; so p.d. across XY falls		
				B1	[6]
5.	(i)	no c	urrent/no light/does not conduct until V is greater than 1.5 V		
			allow 1.4 to 1.6 V (QWC mark)	B1	
		brig	htness/intensity of LED increases with current/voltage above 1.5 V (alternative QWC mark)		
		abov	ve 1.8 V current rises almost linearly with increase in p.d./AW	B1	
		the I	LED does not obey Ohm's law	B1	
		as I	is not proportional to V/AW	M1	
		belo	w 1.5 V. LED acts as an infinite R/ very high R/acts as open switch	A1	
		abox	ve 1.5 V. LED resistance decreases (with increasing current/voltage)	B1	
		uoov	<i>max 5 marks</i> which must include at least one of the first 2	B1	
			marking points		
	(ii)	1	infinite resistance	B1	
		2	$1 = 23.0 \pm 1.0 \text{ (mA)}$	C1	
			$R = 1.9 \times 10^3 / (23 \pm 1) = 83 \pm 4 \ \Omega$	01	
			apply POT error for $0.083 \ \Omega$	A1	[8]

6.	(a)	LED symbol with correct orientation		
		diode symbol + circle + at least one arrow pointing away	B1	
		resistor (need not be labelled) and ammeter in series with it	B 1	
		voltmeter in parallel across LED only	B1	
	(b)	in fig 2 the <u>voltage</u> range is from zero to maximum possible allow 6.0 V		
			B1	
		in fig. 1 the resistance variation is small/AW		
		<i>accept</i> the LED is part of a potential divider	B1	
		(so) in fig. 1 voltage variation across LED is small		
		<i>accept</i> only at the top end of the range/AW	B 1	[6]
7.	the r	esistor limits the <u>current</u> in the circuit (when the LED conducts) rwise it could overheat/burn out/be damaged/AW	B1 B1	[2]
8.	(i)	λ distance between (neighbouring) identical points/points with same phase (on the wave)		
		accept peak/crest to peak/crest, etc.	B1	
		f number of waves passing a point /cycles/vibrations (at a point) per unit time/second		
		<i>accept</i> number of waves produced by the wave source per unit time/second		
			B1	
		v distance <u>travelled by the wave</u> (energy) per unit time/second		
		not $v = f \lambda$ and not 'in one second'	B1	

	(ii)	in 1 second f waves are produced each of one wavelength λ accept time for one λ to pass is $1/f$ so $v = \lambda/(1/f) = f \lambda$	M1	
		distance travelled by first wave in one second is $f \lambda = v$ give max 1 mark for plausible derivations purely in terms of algebra (no words)	A1	[5]
9.	(i)	infra red is part of the e-m spectrum lower f or longer λ than the visible region/light or suitable value or range of λ	B1	
		accept any single λ in range 10^{-5} m to 7.5×10^{-7} m or any reasonable wider range	B1	
	(ii)	1 $\lambda = c/f = 3.0 \times 10^8 / 6.7 \times 10^{13}$ 4.5 × 10 ⁻⁶ (m)	C1	
		accept 4.48×10^{-6} or more s.f. 2 T = 1/f = 1/6.7 × 10 ¹³	A1	
		$T = 1.5 \times 10^{-14} \text{ (s)}$ accept 1.49 × 10 ⁻¹⁴	CI A1	
	(iii)	at least one cycle of a sine or cosine curve as judged by eye <i>ecf (ii)2</i>		
		amplitude 8.0×10^{-12} m	B1 B1	
		$period = 1.5 \times 10^{-14} s$	B1	[9]
10.	(i)	when (two) waves meet/combine/interact/superpose, etc. (at a point) there is a change in overall intensity/displacement	M1	

allow for A1 mark: (vector) sum/resultant displacement(s)/AW

A1

	(ii)	constant phase difference/relationship (between the waves) just stating same frequency not sufficient	B1
11			
11.	(1)	allow ways aming in phase	
		anow waves arrive in phase	M1
		producing either maximum amplitude/intensity or a maximum	A1
		path difference of $(2n + 1)\lambda/2$ for destructive interference	
		allow waves arrive in anti-/out of phase	
			M1
		producing either minimum amplitude/intensity or a minimum	
		<i>max</i> 3 marks; max 1 mark for two correct marking points but with n omitted	Al
	(ii)	$x = \lambda D/a = 0.030 \times 5.0/0.20$	C1
		= 0.75 (m) give 1 mark max for 0.75 mm but zero for 750 m	A1
	(iii)	1 intensity increases by factor of 4	R1
		position unchanged	B1
		2 intensity unchanged	R1
		distance apart of maxima is doubled	R1
		3 intensity unchanged	D1
		maxima move to positions of minima (and vice versa)	ВI
			B1

[11]

[3]

12.	(a)	(i)	$E = hc/\lambda = 6.63 \times 10^{-34} \times 3.0 \times 10^{8}/6.3 \times 10^{-7}$ mark is for correct substitution into formula	
				M1
			= 3.16×10^{-19} (J) min of 2 sig figs; allow 3.1 for $h = 6.6 \times 10^{-34}$	A1
		(ii)	$1.0 \times 10^{-3}/3(.2) \times 10^{-19} (= 3.1 \times 10^{15})$ accept 3 × 10 ¹⁵ ; the mark is for the expression	B1
		(iii)	energy levels explanation: electrons have discrete energies in atom/AW <i>QWC mark</i>	B1
			each photon produced by electron moving between levels <i>good diagram can score marks</i>	B1
			photon energy equal to energy difference between levels allow $E_1 - E_2 = hf$ or similar	B1
			electron loses energy/making transition in correct direction	B1
		(iv)	blue light has a higher frequency/shorter wavelength than red light energy per photon is higher (so fewer needed to produce one mW)	B1
	(b)	(i)	vertical arrow up approximately through X allow tolerance e.g. $\pm 10^{\circ}$	B1
		(ii)	$I = 0.2 \text{ ne}; = 0.2 \times 3.2 \times 10^{15} \times 1.6 \times 10^{-19}$	B1
		()	max 2 marks if forget 0.2 factor = $1.0(24) \times 10^{-4}$ (A) or 0.10 mA (9.6 × 10^{-5} if using 3 × 10^{15})	C2
			0.51 mA (0.48) if forget 0.2 factor	A1

		(iii)	reflection/absorption at top layer; light/some photons reach bottom layer; photons below threshold energy/photons absorbed by electrons without release; recombination of ion pairs in insulating layer; scattering of light/photons out of insulating layer		
			award mark for any sensible comment; see examples given	B1	[14]
13.	(a)	(i)	paths spread out after passing through a gap or around an obstacle/AW	B1	
		(ii)	<pre>wavelength of electrons allow electrons behave as waves/AW must be comparable/of the order of magnitude of the atomic spacing</pre>	M1	
			allow must be about 10^{-10} m	A1	
	(b)	$\lambda = h/\lambda$ v = 6	/mv mark for selecting formula .6(3) × 10^{-34} / 9.1(1) × 10^{-31} × 1.2 × 10^{-10}	C1	
		= 6.0	correct manipulation and subs. shown or $6.1 \times 10^{6} \text{ (m s}^{-1)}$	M1	
			<i>give</i> all 3 marks for answers to 3 figs or more: i.e. 6.04, 6.06 or 6.07	A1	
	(c)	(i)	$eV = \frac{1}{2}mv^{2}$ mark for algebraic equation $V_{1} = \frac{2}{2}(2 - 0.1 + 10^{-31} + 0.00 + 10^{6})^{2}(2 - 0.1 + 0.00^{-19})$	C1	
			$v = mv / 2e = 9.1 \times 10 \qquad \times (6.0 \times 10) / 2 \times 1.6 \times 10$ mark for correct substitution $= 1.0(2) \times 10^{2} (V)$	C1	
			give 1 mark max for k.e. = $1.6(4) \times 10^{-17} J$ using 6.1 gives 104 (V)	A1	

(ii)	electrons should be repelled by cathode and/or
	attracted by anode or they will be attracted back to the
	cathode/slowed down if cathode positive

award mark if answer indicates this idea

[10]

B1

B1

C1 A1

14. (a) i	resistance =	p.d./current
-----------	--------------	--------------

 $= 24 (\Omega)$

accept voltage instead of p.d.; ratio of voltage to current;	
voltage per (unit) current	
not $R = V/I$ or p.d. = current x resistance or p.d. per amp or	
answer in units or voltage over current	

(b)	(i)	6 V	-
	(ii)	R = V/I = 6/0.25	RI

ecf (b)(i) 240 V gives 960 Ω award 0.024 Ω 1 mark only (POT error)

(c) (i) 6 V supply with potential divider 'input' across it and lamp across p.d. 'output' ammeter in series with lamp voltmeter across lamp

accept 0 – 6 V variable supply with lamp across it *not* variable R in series with supply circuit with no battery present can only score voltmeter mark

> B1 B1 B1

Ambrose College

	(ii)	non-zero intercept line indicating increasing value of R with current	
		curve must reach y-axis accept straight line or upward curve	
			B1 B1
	(iii)	resistivity/resistance of filament wire increases with temperature the temperature of the lamp increases with current/voltage increase more frequent electron-ion/atom collisions/AW increased ion vibrations	
		accept any two of the four statements accept AW, e.g the lamp heats up because	
		of the current	B1 B1
(d)	(i)	lamps do not light	
		ignore reasons unless too contrary	B1
		remaining lamps are lit with qualification	
		qualification could be more dimly or sensible explanation	B1
	(ii)	using resistors in parallel formula to obtain a value of R per unit R per unit = 19.4 Ω or R total = 774 Ω I = 6/19.4 or 240/774 = 0.31 A	
		eg takes R of bulb = 10Ω giving R per unit = 9.1Ω gains first mark only ecf (b)(i)(ii) accept R of resistors = 4000Ω ; current in chain = $0.06 A$; total current = $0.06 + 0.25 = 0.31 A$ 0.3 A is SF error so gains 2 marks only apply SF error only once in paper	Cl
			AI

[16]

15.	(a)	E = I($(\mathbf{R} + \mathbf{r})$	24
	(b)	(i)	1 0.80 O	B1
	(0)	(1)	1 0.00 22	B1
			2 6.4 V	P 1
		(ii)	(sum of) e.m.f.s = sum /total of p.d.s/sum of voltages (in a loop)	DI
				B1
		(iii)	6.4 = 0.80I I = 8.0 A	
			can be 2 ecf from (b)(i), eg 21.6/0.8	
			= 2/A (1 ecf) or 21.8/0.68 = 31.8 A (2 ecf)	C1
				A1
	(c)	(i)	$Q = It = 2.5 \times 6 \times 60 \times 60$ $= 54000 \text{ (C)}$	
			allow 1 mark if forgets one or two 60's giving 900 C or 15 C	
				C1 A1
		(ii)	energy = $QE = 54000 \times 14$ = 756000 (J)	
			allow (use of 12 V gives) 648000 J for 1 mark	
				C1 A1
		(iii)	energy loss = $I2Rt = VIt = 2 \times 2.5 \times 6.0 \times 60 \times 60 = 108000 J$ percentage = $(108000/756000) \times 100 = 14\%$	
			accept $Q\Delta V = 54000 \times 2.0 = 108000 J$ accept $Q\Delta V/QE = 2.0/14.0 = 14\%$	
			not 756000/54000 = 14%	C1
				A1 [12]
				ניבו

16.	(a)	(i)	I = V/R = 8.0/200 I = 0.040 (A)	
				C1 A1
		(ii)	V = 24 - 8 = 16 (V)	B1
		(iii)	R = $16/0.04$ giving R = $400 (\Omega)$	
			accept ratio of p.d.s to ratio of Rs ecf from (i) & (ii) ie (a)(ii)/(a)(i)	C 1
				A1
		(iv)	$P = VI = I^2 R = V^2/R$ P = 0.640 (W)	
			ecf from (i) & (ii) accept 640 mW	
				A1
	(b)	(i)	the thermistor has heated up/ its temperature has increased so its resistance has dropped so the ratio of the voltages across the potential divider changes/AW	
			accept so the current increases	
			accept so IR of fixed resistor increases	B1 M1 A1
		(ii)	voltages are equal so resistances are equal	B1
	(c)	(i)	straight line through origin labelled R passing through 0.06,12	
			allow correct lines with no labels	B1
		(ii)	upward curve below straight line through origin labelled T	RI
			passing through 0.06,12	B1 B1

[15]

(i)	diffraction or refraction or superposition or interference	
	accept any two from the four listed	B2
(ii)	only transverse waves can be polarised	
	<i>accept</i> sound is a longitudinal wave or <i>e-m</i> waves are transverse	
		B1
(iii)	place transmitter and receiver facing each other	D1
		BI
	rotate either transmitter or receiver through 90° about axis joining aerials	
	or use two polarising inters and rotate from parallel to crossed	B1
	observe signal fall to zero/minimum from initial high value on meter monitoring output of receiver	
	explanation of observations/link between observations and polarisation	
	accept from diagram	
	allow (metal) grille/polarising filter to	
	polarise microwaves	
	accept place (metal) grille/polarising filter	
	receiver and rotate through 90°	
	OWC mark	
	~	B1
		B1

[7]

17.

18.	(i)	1	0.3 (mm)		
			tolerance $\pm 0.02 \text{ mm}$ ie $0.28 - 0.32 \text{ (mm)}$	B1	
		2	T = 4.0 ms F = 1/T = 250 (Hz)		
			allow 0.25 Hz or any other POT error for 1 mark	C1 A1	
	(ii)	real givi sine	isation that intensity is proportional to $(\text{amplitude})^2$ ng amplitude increase by $\sqrt{2}$, ie4(.2) mm wave of same frequency with any increased amplitude	B1 B1 B1	
	(iii)	mic osci	rophone (to transfer mechanical motion to electrical signal/voltage) lloscope to display oscillation/wave for measurement (of period)/AW	51	
			accept computer/datalogger/frequency meter with qualification as for oscilloscope	B1 B1	[8]
19.	(i)	nod	e occurs where the amplitude/displacement is (always) zero		
			accept displacement for amplitude for (i) only	B1	
	(ii)	anti max	node occurs where the amplitude (of the standing wave) takes the timum (possible) value		
				B1	

[2]

20.	(a)	(a) (i)	(a) (i) wave travels to end and is reflected reflected wave <u>interferes/superposes</u> with incident wave	wave travels to end and is reflected reflected wave <u>interferes/superposes</u> with incident wave	ave B1 B1	
			always destructively at certain points to produce nodes or always constructively at certain points to produce antinodes			
			<i>accept 2</i> waves of same <i>f</i> travelling in opposite directions <u>interfere</u> with no reference to reflection	D1		
		(ii)	A and N points labelled correctly	B1 B1		
		(iii)	3	B1		
		(iv)	$30 \text{ cm} = \frac{\lambda}{2} \text{ or } \lambda = 60 \text{ cm}$ v = f \lambda = 120 \times 0.6 v = 72 (m s ⁻¹)			
			allow 1 mark for correct calculation using $v = f \lambda$ with wrong wavelength if method/reasoning clear			
				C1 C1 A1		
	(b)	v = 2 wave 2 hal	the becomes $v = 3k$ (k = 36) elength increases by 3/2 (as frequency unchanged) f wavelengths fit on the string so standing wave is set up/AW			
			accept v increases by $3/2$ or $v = 108 \text{ m s}^{-1}$ accept wavelength becomes 90 cm allow ecf correct conclusion with wrong λ	B1 B1		
				B1	[11]	

21.	(a)	(i)	line spacing d = $1/(300 \times 1000)$ (= 3.3×10^{-6} (m)) look for clear reasoning to award mark	B1	
		(ii)	$\sin \theta = \lambda/d$ = 6.3 × 10 ⁻⁷ /3.3 × 10 ⁻⁶ = 0.19 θ = 11 degrees rounding error of 0.2 here gives 11.9°	DI .	
			11.9° gets 2 marks	C1 C1 A1	
		(iii)	spots can be seen where $n = d \sin \theta / \lambda$ maximum n when $\sin \theta = 1$ (giving $n = 5.3$) so $n = 5$ can be seen thus 5 spots on either side of straight through + straight through = 11		
			<i>accept</i> basic idea of orders for first mark N.B. calculation not necessary	B1 B1 B1	
	(b)	(i)	$\varepsilon = hc/\lambda = 6.6 \times 10^{-34} \times 3.0 \times 10^{8}/6.3 \times 10^{-7}$ = 3.14 × 10 ⁻¹⁹ (J)		
		<i>(</i>)	$50 - 10^{-4}$ (2.1.4 $- 10^{-19}$	C1 A1	
		(11)	$5.0 \times 10^{-73.14} \times 10^{-15}$ = 1.6×10^{15}		
			accept 3.2 × 10 ⁻¹⁹ (J) ecf from b(i)1	C1 A1	[11]
22.	(i)	Elect	trons behave as waves/have a wavelength	B1	
		diffra elect regul	action observable because gaps/atoms are similar to wavelength of rons lar pattern of atoms acts as a grating		
		allov rings bean	s occur because atomic 'crystals' at all possible orientations to n/AW		
			max 2 out of next 4 marking points		

B1 B1

(ii)	1	$\begin{split} \lambda &= h/mv = 6.63 \times 10^{-34}/9.1 \times 10^{-31}v \\ v &= 6.63 \times 10^{-34}/9.1 \times 10^{-31} \times 5.0 \times 10^{-11} \\ v &= 1.5 \times 10^7 \ (m \ s^{-1}) \end{split}$	C1
			A1
	2	$\frac{1}{2}mv^2 = eV$ $\frac{1}{2} \times 9.1 \times 10^{-31} \times 2.25 \times 10^{14} = 1.6 \times 10^{-19}V$ $V = 6.4 \times 10^2 (V)$	
		using 6.6 instead of 6.63 gives 1.45×10^7	
		using $v = 1.45 \times 10^7$ gives 600 V	
			C1
			C1
			A1

23. (a) A (clean) zinc plate mounted on the cap of a gold-leaf electroscope. Plate initially charged negatively A u-v lamp shining on plate The gold leaf collapses as the charge leaks away from the plate (when ultra-violet light is incident on the zinc plate) so experiment indicates the emission of negative charge/electrons

first 3 marks can be awarded from diagram or description *QWC* mark

zw C mark

B1 B1 B1 B1 [8]

- B1 Or A simple photocell, eg two plates in a vacuum envelope A (12 V) dc supply is connected to the photocell and (nano)ammeter. A suitable frequency/u-v lamp shining on one plate
 - B1 B1 B1

The presence of u-v /blue light causes a current in the circuit. so experiment indicates the emission of negative charge/electrons

> *accept* photocell made of clean magnesium ribbon surrounded by fine copper gauze first 3 marks can be awarded from diagram or description *ignore* polarity of supply OWC mark

> > B1 B1

 Or A (potassium) photocell connected across a (high impedance) voltmeter. Incident light of different frequencies; produced either by white light source and colour filters of known spectral range or by using a diffraction grating or prism to produce a first order spectrum.
 Different p.d.s are set up across the electrodes of the photocell (when the photocathode is illuminated with light of different frequencies).

so experiment indicates the emission of negative charge

first 3 marks can be awarded from diagram or description

QWC mark

B1 B1 B1

B1 B1

(b) Individual photons are absorbed by individual electrons in the metal surface.

These electrons must have absorbed sufficient energy to overcome the work function energy of the metal/to reach the minimum energy to release an electron from the surface **or** only photons with energies above the work function energy will cause photoelectron emission Concept of instantaneous emission Number of electrons emitted also depends on light intensity Einstein's photoelectric energy equation in symbols with symbols explained, ie (energy of photon) = (work function of metal) + (maximum possible kinetic energy of emitted electron)

> stop marking after the first five marking points, ie ticks and crosses not photons are absorbed by electrons; 1 to 1 relationship must be implied accept definition of work function energy

accept shorter λ /higher f photon causes higher (kinetic) energy electron

accept full word equation without symbols for 2 marks maximum 5 marks

B1	
B1	
B1	
B1	
B1	

[10]

24.	(a)	(i)	Electrons in a metal	B1
		(ii)	Ion in an electrolyte	B1

$$I = 130 (A)$$

2.
$$n = I/e = 130/1.6 \times 10^{-19}$$
 C1
 $n = 8.1 \times 1020$ A1

$$1 \times 1020$$

[6]

25.	(a)	(i)	Correctly selected and re-arranged: $\rho = RA/L$; symbols defined: $A = \underline{\text{cross-sectional}}$ area, $R = \text{resistance}$, $L = \text{length}$	M1 A1
		(ii)	ho is independent of dimensions of the specimen of the material/AW	B1
	(b)	R =	$1.7 imes 10^{-8} imes 0.08/3.0 imes 10^{-4}$	C1

$$R = 4.5(3) \ 10^{-6} \ (\Omega)$$
 A1 [5]

26. p.d.: energy transferred per unit charge from electrical form (into other (i) **B**1 forms, e.g. light/heat) e.m.f.: energy transferred per unit charge into electrical form (from other **B**1 forms, e.g. chemical/mechanical) (ii) J C⁻¹ B1 [3]

27.	(Sum of) e.m.f.s = sum /total of p.d.s/sum of voltages (in a loop)	B1
	energy is conserved	B1

28.	(a)	(i)	any straight line of best fit judged by eye	B1	
		(ii)	1 6.0 ± 0.2 (V) /consistent with the y-intercept of their graph	B1	
			2 $r = \text{gradient} / (\epsilon - V) / I / V_{\text{lost}} / I$	B1	
			e.g. $r = (6.0 - 0)/2.0$	M1	
			$r = 3.0 \Omega$	A1	
	(b)	(i)	I = 0.6 A and V = 4.2 V	B1	
	. /	. /	$R = V/I = 7.0 \; (\Omega)$	C1	

(ii)
$$R = 7.0 (\Omega)$$
 A1

$$P = IV = 4.2 \times 0.6$$
 C1
 $P = 2.5$ W A1

[10]

[2]

29.	(a)	(i)	resistance decreases/falls/drops (with increase in temperature)	B1	
		(ii)	$100 \pm 10 \ \Omega$	B1	
		(iii)	for low temps ΔR is large for $\Delta \theta$ and at high temps ΔR is small for same $\Delta \theta$; so sensitivity decreases (continuously) from low to high temperatures	B1 B1	
	(b)	(i)	correct circuit symbol	B1	
		(ii)	connections in parallel with fixed resistor B1	B1	
		(iii)	$R_{\rm th} = 100 \text{ to } 105 \ \Omega$	B1	
			$R_{\rm tot} = 200 + R_{\rm th}$	M1	
			$I = V/R_{\text{tot}} = 6/R_{\text{tot}} (= 0.02 \text{ A})$	A1	
		(iv)	$(V = IR = 0.02 \times 200) = 4.0 (V)$	A1	
					[10]

30.	(i)	basic potential divider argument	B1	
		detail, e.g. with Rth about 100 Ω at 70°C then R must be 1000 Ω to achieve	54	
		0.5 V to 5.5 V ratio/AW	B1	
	(ii)	advantage: (approx.) constant sensitivity/ linear (output)	B1	
		disadvantage: less sensitive (over most of range)/range of voltages is small/battery lasts for less time	B 1	
		sman battery lasts for less time	DI	[4]

31.	A:	gamma / γ (ray/radiation/wave)	B1
		$\lambda = 10^{-16}$ to 10^{-10} (m)	B1
	B:	infrared / IR / i.r.	B1
		$\lambda = 7 \times 10^{-7}$ to 10^{-3} (m)	B1

32.	Any two from:		
	travel at the speed of light/3 \times 10 ⁸ (m s ⁻¹) (in a vacuum)		
	can travel in a vacuum		
	consists of oscillating E- and B-fields		
	transverse waves/can be polarised		
	can be diffracted/reflected/refracted	$B1 \times 2$	
			[2]

[4]

33.	(i)	plane (look	e polarised light vibrates (travels) <u>in one plane only</u> t for reference to one plane of oscillation)	B1	
	(ii)	only soun	transverse waves can be polarised/AW d waves are longitudinal/not transverse/AW	B1 B1	[3]
34.	(i)	evide full/r paral no tr	ence of knowledge of: nax transmission when the (transmission axis of) polarising sheet is lel to the light's plane of polarisation/vibrations ansmission when the (transmission axis of) polarising sheet is at right	B1	
	(ii)	refle polar	es to light's plane of polarisation/vibrations cted light from surface is partially plane polarised rising sheet is placed at right angles to reflected light's polarisation e/AW	B1 B1 B1	
		Providence			[4]
35.	any v	valid e	xample: e.g. radio waves, microwaves	M1	
	(allo	w mici	rowave detector)	A1	[2]
36.	poss As d As d	possible differences in amplitude/wavelength/phase/waveform/energy: As described for progressive wave As described for standing wave			[2]
37.	(a)	(i)	correct standing wave drawn to top of end correction	B1	
	()	(ii)	all A and N labelled correctly	B1	
		(iii)	clear method showing $L_1 - L_2 = \lambda/2$	B1	
		(iv)	$0.506 - 0.170 = \lambda/2$; $\lambda = 0.67(2)$ (m) $v = 500 \times 0.672$ v = 336 (m s ⁻¹) (only accept 340 m s-1 if working shown)	C1 C1 A1	
	(b)	smal mear so le Canc	ler wavelength hs smaller distances to measure ss accuracy <u>in the measurements</u> /AW lidate's response shows steps in a logical order as above.	C1 M1 A1 1	
					[10]

38.	when two waves meet/interfere (at a point)	
	the resultant displacement is the sum of individual displacements	
	(allow the resultant amplitude is the vector/phasor sum of the individual	B1
	amplitudes)	B1

39.	(a)	(i)	constant phase difference (allow 1 mark for same phase difference or same frequency/wavelength)	B2
		(ii)	path difference = $\lambda/2$	B1
	(b)	(i)	evidence shown that fringe width $x = 8.0$ mm $a = \lambda D/x = 6.4 \times 10^{-7} \times 1.5/8.0 \times 10^{-3} = 1.2 \times 10^{-4}$ m (give 2 marks for using $x = 4.0$ mm giving $a = 2.4 \times 10^{-4}$ m)	B1 C1 A1
		(ii)	maximum intensity when $y = 0$ AND minima at +4 and -4 correct repeat distance, i.e. 8.0 mm with at least 2 full cycles drawn	B1 B1

40. (a) quantum of energy / radiation / packet of energy B1

(b) (i)
$$f = E/h = 5.60 \times 10^{-19} / 6.63 \times 10^{-34}$$
 C1
 $f = 8.45 \times 10^{14} (Hz)$ A1
(ii) 1 minimum energy to release an electron from the surface (of the metal) B1
2 $5.60 \times 10^{-19} - 4.80 \times 10^{-19} (= 8.0 \times 10^{-20} J)$ B1

(iii)
$$8.0 \times 10^{-20} = \frac{1}{2}(9.1 \times 10^{-31})v^2$$
 M1
giving $v = 4.2 \times 10^5 \text{ (m s}^{-1})$ A1

(c) (i) Correct selection of:
$$\lambda = h/p$$
 or $\lambda = h/mv$ M1
where all symbols are defined A1

(ii)
$$\lambda = 6.6 \times 10^{-9} \text{ (m)}$$
 C1
 $\lambda = 1.7 \times 10^{-9} \text{ (m)}$ A1

[11]

[2]

[8]

41.	Any Eleven from: 1 kW h is the energy (transformed by) 1 kW (device) in a time of 1 hour reference to $E = Pt/1 kW h = 1000 \times 3600$ 1 kW h = $3.6 \times 10^{6} (J)$	B1 B1 B1	
	1 eV is the <u>energy</u> (transformed by an) electron travelling through a p.d. of 1 V reference to $E = VQ$ 1 eV = 1.6×10^{-19} (J)	B1 B1 B1	
	kilowatt hour is useful when considering large amounts of energy/AW electronvolt is useful when considering small amounts of energy/AW eV for photons/in atomic physics/in nuclear physics kW h for domestic use/electrical bills	B1 B1 B1 B1	
	energy of electron or lamp in joules $(1.6 \times 10^{-13} \text{ J and } 4.3 \times 10^{6} \text{ J})$ (mark to be awarded only if E = Pt or E = VQ not credited) filament lamp: 1.2 <u>kW h</u> electron: 1.0 <u>MeV</u> # Candidate must make specific links to how the size of these answers	B1 B1 B1	
	compare with the Joule.	1	[12]
42.	Any two from: Travel through vacuum (allow 'free space') Travel at the speed of light \ c \ 3 × 108 m s-1 (in vacuum) Consist of oscillating electric and magnetic fields They are all transverse waves \ can be polarised Can be diffracted \ reflected \ refracted	B2	
	Consist of photons		[2]
43.	radio (waves); Infra-red \ ir; gamma \ γ (rays\waves\radiation)	В3	[3]
44.	Quantum of energy \ (electromagnetic) radiation \ light \ packet of energy (Do not allow 'particle of light' – since in the stem of the question)	B1	[1]

45.	(a)	Q = I	It.	(Allow any	subje	ect)					C1	
		Q = ($0.040 \times 5.0 \times$	60×60	ļ	Q = 0.040	0 × 1.8 ×	10^{4}				
		charg	ge = 720				o 1		5		A1	
		(40 × could	c 5 = 200 or 0 omb \ C \ As	$0.040 \times 5 = 0$	0.02 0	or 40×1	.8 × 10 ⁺ =	= 7.2 ×]	10 [°] scores [°]	1/2)	B1	
	(b)	It is l curre	ess because t nt 'drops' af	the average ter 3 hours.	curre	ent is less	\ area (ur	nder gra	ph) is less	١	B1	[4]
46.	Curre provi	ent is (ded th	directly) proj e temperatur	portional to e \ (all) phy	poter sical	ntial diffe	erence (fo n(s) remai	r a meta ns cons	il conducto tant	or)	M1 A1	[2]
47.	(i)	M m	arked at the e	end of the g	raph						B1	
	(ii)	curre	ent is 5 (A) ar	nd p.d is 6 (V)						C1	
		P = V (Allo powe	$\sqrt{I} \setminus p = 6.0 \times p = I^2 R \text{ or}$ or $p = I^2 R \text{ or}$ or $r = 30 \text{ (W)}$	5.0 r $p = V^2 \setminus R$))						C1 A1	
	(iii)	1.	$V_L = 1.0 (V_L)$) (From the	e I/V g	graph) \ R	$R_L = 1.0/2$.0 or 0.5	$5(\Omega)$		M1	
			$V_R = 1.2 \times 10^{-1}$	$2.0 \setminus R_{\rm T} = 1$.2 + 0).5					M1	
			V = 1.0 + 2 voltmeter r	$.4 \setminus V = 1.7$ eading = 34	$\times 2.0$						A1 A0	
		2.	Vr = 4.5 - 1	3.4 (= 1.1 V)	/)\4.:	5 = 2.0r -	+ 3.4 (Pos	sible ec	:f)		C1	
			$r = \frac{1.1}{2.0}$,			×					
			r = 0.55 (Ω) (1.05 🛙	Ω scores	0/2 since	the lam	p is ignore	d)	A1	[9]

48.	(a)	Ammeter in series		B1
		Voltmeter in parallel	(across the ends of the wire)	B1

(b)	$\rho = \frac{RA}{L}$	(Allow any subject)	M1		
	R = resistance, L = length a	nd $A = (cross-sectional)$ area	A1		
	$(\rho = resistivity is given by the second se$	en in the question)			
	Any <u>four</u> from:				
	Measure the length of the w	vire using a ruler	B1		
	Measure the diameter of th	e wire	B1		
	using a micrometer \ vernie	er (calliper)	B1		
	Calculate the (cross-section	al) area using $A = \pi r 2 \setminus A = \pi d2/4$	B1		
	Calculate the resistance (of	the wire) using $R = \frac{V}{I}$	B1		
	Repeat experiment for diffe	erent lengths $\ current \ voltage \ diameter$	D1		
	(to get an average)		BI		
	Plot a graph of R against L	The gradient = ρ/A .	B1		
	(Or Plot V against I. The g	radient is $\rho L/A$)			
	Structure and organisation.		B1		
	Spelling and grammar.		B1		

QWC

The answer must involve physics, which attempts to answer the question.

Structure and organisation

Award this mark if the whole answer is well structured.

Spelling and Grammar mark

More than two spelling mistakes or more than two grammatical errors means the SPAG mark is lost.

49.	(i)	light-dependent resistor \ LDR	B1	
	(ii)	Resistance of X decreases (as light intensity is increased) The current (in the circuit) increases	B1 B1	
	(iii)	The current is halved.	B1	[4]

[10]

resistance =
$$1.5 (k\Omega)$$

[3]

C1

A1

51. (i) p.d across 1.5 k Ω resistor =
$$5.0 - 1.2 = 3.8$$
 (V) B1

(ii)
$$V = \frac{R_2}{R_1 + R_2} \times V_0 \setminus \frac{V_1}{R_1} = \frac{V_2}{R_2} \setminus \text{current} = 3.8/1.5 (= 2.53 \text{ mA})$$
 C1

$$1.2 = \frac{R}{R+1.5} \times 5.0 \ \ \frac{1.2}{R} = \frac{3.8}{1.5} \ \ R = 1.2/2.53$$
 C1

$$R = 474 (\Omega) \approx 470 (\Omega)$$
A1
(Using 3.8 V instead of 1.2 V gives 4.75 k Ω - allow 2/3)

52.
$$\lambda = \frac{h}{mv} \setminus \lambda = \frac{h}{p}$$
 M1

 $\lambda = \text{wavelength}, \ m = (\text{particle}) \text{ mass}, \ v = \text{speed} \setminus \text{velocity or } p = \text{momentum}$ A1 The wavelength \ \ \lambda is a wave property B1 The mass \ m (or momentum \ p) is a particle property B1

[4]

[4]

53. (i) 1. The minimum frequency (of radiation \ waves) needed for electrons
to be released (from the metal surface) \ for photoelectric effect B1
2. Its temperature increases \ gets warm \ 'heats up' B1
(ii)
$$E = 2.2 + 1.9 (= 4.1)$$
 C1
 $E = 4.1 \times 1.6 \times 10^{-19} = 6.56 \times 10^{-19} (J)$ C1
(Allow this mark for correct conversion of either 1.9 eV or 2.2 eV to joules)
 $f = (\frac{6.56 \times 10^{14}}{6.63 \times 10^{-34}} =) 9.89 \times 10^{14} \approx 9.9 \times 10^{14} \setminus \lambda = \frac{hc}{E} = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{6.56 \times 10^{-19}}$ C1
 $\lambda = 3.03 \times 10^{-7} \approx 3.0 \times 10^{-7} (m)$
(Allow 1 sf answer) A1
(Allow 3/4 marks for $\lambda = 4.85 \times 10^{-26}$ m when eV is not converted to joules)

[6]

54.	(a)	(i)	amplitude = 3.75 cm {allow 3.7 to 3.8)	B1	
		(ii)	when $t = 1.8$ ms displacement = ANY negative value (-)3.35 cm (ALLOW 3.3 TO 3.4)	B1 B1	
		(iii)	period = 2.64 ms (allow 2.64 to 2.68)	B1	
		(iv)	frequency = 1/period = $1/(2.64 \times 10 - 3) = 379$ Hz (379 to 373 or 380) {ecf for T}	C1 A1	
	(b)	recal $\lambda = v$	l of v = f λ //f = 300/379 = 0.79 m (or 0.8 m) {allow ecf from (iv)}	C1 A1	[8]

55.	(i)	ANY 3 correct phenomena from REFLECTION, REFRACTION, INTERFERENCE, SUPERPOSITION, DIFFRACTION,		
		(allow transfer energy)	B2	
		3 correct scores 2 marks, 2 correct scores 1 mark otherwise zero		
	(ii)	POLARISATION	B1	
				[3]

56.	(i)	it consists of nodes and antinodes / it does not transfer energy (WTTE) formed by two identical waves travelling in opposite directions (WTTE) (microwaves leaving transmitter) interfere (with reflected waves) (WTTE) {allow superimpose/interact/cancel out/reinforce for interfere}	B1 B1 B1
	(ii)	1.wavelength of the microwaves = $2 \times 1.4 = 2.8$ cm	B1
		2. speed of microwaves in air = 3×108 m/s OR c frequency = $3 \times 108 / 2.8 \times 10 - 2$ (allow ecf) = 1.07×1010 Hz	M1 A1
	(iii)	Place a metal grid {allow "Polaroid"} (between T and D) and rotate (or place at 900) OR rotate grid/transmitter/detector this causes minm/zero signal (WTTE)	B1 B1

57. (a) (i)
$$R = V / I = 6.0 / 8.2 \times 10-6 = 7.32 \times 105 \Omega (1)$$

 $\sigma = 1 / \rho$ stated or implied (1)
 $= L / RA (1)$
 $= 0.018 / (7.32 \times 105 \times 0.0075 \times 0.0075) = 4.37 \times 10^{-4} \Omega^{-1} m^{-1} (1)$ 4

(ii)
$$v = I / nAe = 8.2 \times 10^{-6} / (2.1 \times 10^{16} \times 0.0075 \times 0.0075 \times 1.6 \times 10^{-19}) (1)$$

= 43.4 m s⁻¹ (1) 2

[8]

(b) (i) Charge carriers / electrons in the valence band are given more thermal energy; (1) so more are able to cross the energy gap (into the conduction band). (1) 2

(ii)
$$\ln \frac{n^2}{2.1 \times 10^{16}} = 1.28 \times 10^4 \left(\frac{1}{298} - \frac{1}{303}\right) (= 0.709) (1)$$

 $\frac{n^2}{2.1 \times 10^{16}} = 2.03 (1)$
 $n^2 = 4.27 \times 10^{16} m^{-1} (1)$ 3

(iii) (From I = nAve), with no change in drift velocity current would be 4.27 / 2.1
= 2.03 times bigger; (1)
For same current p.d. needs to be 6 / 2.03 = 2.95 V. (1)

[13]

58. (a) p.d. across electromagnet =
$$0.2 \times 48$$
 (1)
= 9.6 V (1) < 1% of 1200 V 2
(b) Cable resistance $\approx 1200 / 0.2$ (1)
 $\approx 6000 \Omega$ 1
(more precisely R = $[1200 - 9.6] / 0.2 = 5952 \Omega$)
(c) Area of copper = $\rho L / R$ (1)
= $1.7 \times 10^{-8} \times 3000 \times 10^{3} / 6000$ (1)
= $8.5 \times 10^{-6} m^{2}$ (1)
Diameter = $\sqrt{(4 \times 8.5 \times 10^{-6} / \pi)}$ (1)
= 3.3 mm 4
(d) Mass of copper = $8930 \times 3000 \times 10^{3} \times 8.5 \times 10^{-6}$ (1)
= $2.28 \times 10^{5} \text{ kg}$ (1) 2
(allow ecf using dia.. 3.5mm) [9]

59. (a) (i)
$$Q = It$$
 with knowledge of what the symbols mean (1)
= $0.050 \times 4.0 \times 3600$ (1)
= 720 (C) (1)

3

		(ii)	E = QV with knowledge of what the symbols mean (1) = $720 \times 6.0 = 4320$ (J) (1)	2	
	(b)	chen	nical (potential) (energy) (1)	1	
	(c)	(i)	I = $4.0/48 = 0.5/r$ (ie by proportion or by finding current) (1) r = $24/4 = 6$ (Ω) (1)	2	
		(ii)	E = V2t/R with knowledge of what the symbols mean (1) = $4.02 \times 2700 / 48$ (1) = 900 (J) (1)	3	
		(iii)	900/4320 = 5/24 = (0.208) (1)	1	
	(d)	beca	use the p.d. across it $(4.5 - 4.0)$ is known only to 1 sig.fig.	1	[13]
60.	diag dista	ram do ince ac	bes not show the movement of particles (in direction across tube) (1) ross tube is a measure of the displacement of particles along tube (1)		[2]
61.	on o when	pen cir n short	reuit (infinite resistance so) current zero so $V \times I = 0$ (1) red, resistance is zero so I^2R is zero (1)	2	[2]
62.	(a)	spee	$d = 3.00 \times 10^8 \text{ (m s}^{-1}) (1)$	1	
	(b)	(i)	wavelength = eg $0.124(\pm 0.002)/3 = 0.041$ (m) (1)	1	
		(ii)	frequency = $c/\lambda = 3.00 \times 10^8 / 0.041$ (1) = 7.3(2) × 10 ⁹ Hertz or Hz (1)	2	
		(iii)	allow microwaves or radio waves (1)	1	
	(c)	(i)	both 49 cm (1)	1	

(ii)	phase difference will be zero (1) so amplitude of resultant wave will be a maximum (1)	2	
(iii)	DABC = 80 cm, DC = 18 cm (1)	1	
(iv)	path difference = 62 cm, which is $15\frac{1}{2}$ wavelengths (1) so waves arrive (π radians) out of phase (1) so cancellation (may) take(s) place (1)	3	
(v)	large signal from transmitter would swamp (reflected) weak signals (1) unless they arrived at different times (1) this cancels out the strong signal (1) but allows the weak signal through (1) strong signal could damage the receiver (1) <i>MAXIMUM 3</i>	3	[15]
			[10]

63.	Finite resistance at 0° C	B1
	Resistance increases	B1

[2]

64. (i) Any <u>four</u> from:

1. The resistance of the <u>thermistor</u> decreases (as temperature is increased)	B1
2. The total resistance (of circuit) decreases	B1
3. The voltmeter reading increases	B1
4. Explanation of 3. above in terms of 'sharing voltage'	

$$\frac{V_1}{V_2} = \frac{R_1}{R_2} / V = \frac{R_2}{R_1 + R_2} \times V_0$$
 B1

6. Explanation of current increase in terms of
$$I = \frac{V}{R_{total}}$$
 B1

(Allow ecf for statements 3. and 5. if statement 1. is incorrect – maximum score of 2/4)

(ii)
$$I = \frac{3.6}{1200} (= 3.0 \times 10^{-3}) / \frac{V_1}{V_2} = \frac{R_1}{R_2} / V = \frac{R_2}{R_1 + R_2} \times V_0$$
 C1

$$R = \frac{1.4}{3.0 \times 10^{-3}} \qquad / \frac{R}{1200} = \frac{1.4}{3.6} / 1.4 = \frac{R}{R + 1200} \times 5.0 \qquad C1$$

$$R = 467 \ (\Omega) \approx 470 \ (\Omega)$$

(When 1.4 V and 3.6 V are interchanged, then $R = 3.1 \times 10^{3} (\Omega)$ can score2/3) (Calculation of total circuit resistance of $1.67 \times 10^{3} (\Omega)$ can score 2/3) (Use of $I = \frac{5.0}{1200}$ scores 0/3)

65. (a) (Semiconductor) diode

(b) The diode symbol circled (No ecf allowed) B1

(c)
$$R = \frac{V}{I}$$
 C1

At 0.20 V, R = infinite / very large A1
At 0.70 V,
$$R = (\frac{0.70}{0.020} =)35(\Omega)$$
 (Allow answers in the range:
{31.82 to 38.89}) A1

[7]

A1

B1

	(d)	p.d across diode = 0.75 (V)	/	$(R_t =$	$\frac{4.5}{0.060} =$)75(Ω)		C1	
		p.d across resistor = 4.5 – 0.75 = 3.75 (V)	/	$(R_{\rm d} =$	$\frac{0.75}{0.060}$ =)12.5(Ω)		C1	
		$R = (\frac{3.75}{0.060} = 62.5 \approx) 63(\Omega)$	/	R = (7)	75 – 12.5	5 = 62.5≈) 63	(Ω)	A1	
		(Use of 0.70 V across the diode gives $R =$	63.	3 Ω - T	his can	score 2/3)			
	(e)	Straight line through the <u>origin</u>	thr	ough (63 V 0	01 (4)		M1	
		[Possible ecf]	, till	ougno	.05 v,0	.01 A)		A1	[10]
66.	Elect	tromotive force /e.m.f.						B1	[1]
67.	ohm	/ (1) Ω						B1	[1]
68.	Coul	omb / C						B1	
									[1]
69.	The s leavi (-1 fa (Do n	sum of the currents entering a point / junction ng (the same point) Or 'Algebraic sum of current of the omission of 'sum' and -1 for omission not allow $I_1 + I_2 = I_3 + I_4$ unless fully explain	on is urre n of	s equal nts at a f 'point)	to the s a point = 2'/ 'junct	um of the cur 0' ion')	rents	B2	

[2]

70. (i) S_2 closed and S_1 open.

(ii)
$$R = \frac{\rho L}{A}$$
 (Allow any subject) C1

$$\rho = \frac{RA}{L} = \frac{4.0 \times 2.3 \times 10^{-8}}{0.15}$$
C1

$$ρ = 6.133 × 10^{-7} ≈ 6.1 × 10^{-7}$$
 (Answer of 6.1 × 10⁻⁹ can score 2/3) A1
unit: Ω m B1

(iii)
$$\mathbf{1} \frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$
 / $R = \frac{R_1 R_2}{R_1 + R_2}$ C1

resistance of parallel combination $=\frac{12 \times 4.0}{12 + 4.0} = 3.0$ (Allow 1 SF) C1

total resistance =
$$8.0 + 3.0 = 11 (\Omega)$$
 A1

2
$$P = \frac{V^2}{R}$$
 / $I = 4.5/11 (= 0.4091A)$ C1

$$P = \frac{4.5^2}{11} \qquad / \qquad P = 0.4091^2 \times 11 \text{ or } P = 4.5 \times 0.4091 \qquad C1$$

$$P = 1.84 \approx 1.8(W)$$
 (Possible ecf from (iii)1.) A1

3 ratio =
$$\left(\frac{V/12}{V/4.0} = \frac{4.0}{12}\right) = 0.33$$
 / ratio = $\frac{1}{3}/1:3$ B1

[2]

B1

71.	(i)	particle / particulate / quantum / photon	B1
	(ii)	wave	B1

72.	Any three from points 1 to 6:				
	1.	Photon mentioned	B1		
	2.	Surface electrons are involved			
	3.	A single photon interacts with a single electron	B1		
	4.	Energy is conserved in the interaction between photon and electron	B1		
	5.	$hf = \phi + KE_{(\max)}$			
	6.	<i>hf</i> is the energy of the photon, ϕ is the work function (energy) and KE _(max) is the (maximum) kinetic energy of the electron.	A1		
		The frequency of blue light is greater than the red light / the wavelength of blue light is shorter than the red light (ora)	B1		
		The <u>photon</u> of blue light has <u>energy</u> greater than the <u>work function</u> energy / the <u>frequency</u> of blue light is greater than the <u>threshold frequency</u> (ora)	B1		
		Intensity does not change the <u>energy</u> of a <u>photon</u>	B1		
	QW	C			
	The a	answer must involve physics, which attempts to answer the question.			
	Structure and organisation -				
	Award this mark if the whole answer is well structured.				
	Spell	ing and Grammar mark -			
	More than two spelling mistakes or more than two grammatical errors means the SPAG mark is lost.				

73.	(i)	$E = 2.0 \times 1.6 \times 10^{-19} (= 3.2 \times 10^{-19} \text{ J})$	C1
-----	-----	--	----

$$E = hf \qquad / \qquad E = \frac{hc}{\lambda} \qquad / \qquad f = \frac{3.2 \times 10^{-19}}{6.63 \times 10^{-34}} (= 4.83 \times 10^{14} \text{ Hz}))$$

$$\lambda = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{3.2 \times 10^{-19}} \qquad / \qquad \lambda = \frac{3.0 \times 10^8}{4.83 \times 10^{14}} \qquad C1$$

$$\lambda = 6.22 \times 10^{-7} \text{ (m)} \approx 6.2 \times 10^{-7} \text{ (m)}$$
 A0

[3]

[8]

74. gradient = $5.6(7) \times 10^{-8}$ (Allow range: 5.5×10^{-8} to 5.9×10^{-8}) B1

gradient =
$$\frac{h}{m}$$
 / $m = \frac{6.63 \times 10^{-34}}{(\text{value of } \lambda) \times (\text{value of } v^{-1})^{-1}}$ C1

$$m = \frac{6.63 \times 10^{-34}}{5.67 \times 10^{-8}} = 1.1(7) \times 10^{-26} (Kg) / m \text{ in the range: } 1.1 \times 10^{-26} \text{ to } 1.2 \times 10^{-26} (Kg) \text{ A1}$$

(Possible ecf for the last two marks)

(The 10^{-4} factor is not very clear on the v⁻¹ axis; therefore allow **full credit** for using 10^4 . This gives a gradient of 5.7×10^{-16} and mass *m* of 1.17×10^{-18} kg)

75.	(a)	(i) (f) vibratium time (ii) (ii) (λ) d (WTTE) {idea of minimallow diagrams	tions/waves/wavelengths/cycles per second/unit istance between neighbouring crests/troughs/pts in phase num distance is essential i.e. look <u>next</u> or equivalent word; but <u>do not allow</u> "length of a wave"}	B1 B1	
	(b)	$v = f\lambda$ ANY VALID A e.g. <u>distance tra</u> { most will prov	AND CONVINCING justification avelled in one second (v) = f (waves) × λ (length of each wave) bably not score this additional mark}	B1 B1	[4]
76.	Any light λ is l {N.E	Any 2 differences, e.g.: light is transverse (sound is longitudinal) light travels in vacuum (sound cannot) OR light can be polarised (sound cannot); λ is bigger for sound than light OR f is smaller for sound than light {N.B. maximum of 1 mark if <u>anything</u> is incorrect}			[2]
77.	(i) (ii)	(wave sources {do not allow ' difference in le	have) <u>constant phase difference</u> (WTTE) 'in phase" but accept "same phase difference"} ngth between detector and each wave source (WTTE)	B1 B1	[2]

[3]
78.	(i)	1. path diff. = $n\lambda$ (where n = 0,1,2 etc) {allow 0, OR λ , OR 2λ etc}	B1	
		2. path diff = $(n + \frac{1}{2})\lambda$ (where n = 0,1,etc) {allow = 0.5 λ OR,1.5 λ , etc}	B1	
		{do not allow answers purely about phase diff. e.g. with degrees or π used and no ref to λ }		
	(ii)	recall of formula $\lambda = \mathbf{ax}/\mathbf{D}$	C1	
		correct substitution for a, λ and D: e.g. $x = (4.86 \times 10^{-7} \times 2)/0.5 \times 10^{-5}$	CI	
		$\mathbf{x} = 1.94 \times 10^{-3} \text{ m} (1.9 \text{ or } 1.944)$	A1	
	(iii)	<u>central white</u> fringe other fringes are coloured (WTTE: e.g. allow anostrum formed)	B1	
		other images are <u>coloured</u> (will E. e.g. allow spectrum formed)	BI	[7]
79.	(a) (b) (c)	ANY 2 points made from the following: - reference to nodes AND antinodes OR constructive AND destructive interference - correct link for either antinodes with constructive OR nodes with destructive - (meeting/superposing) waves must be COHERENT (allow "in phase") two antinodes labelled (with A) at centres of hot zones (<u>please look closely</u> !) {N.B. two or more correct scores 1, any incorrect scores zero), recall of speed of microwaves = 3×10^8 (m/s) correct substitution: e.g. $\lambda = v/f = 3 \times 10^8 / 2.45 \times 10^9$ $\lambda = 1.22 \times 10^{-1}$ m = 0.122 m	B2 B1 B1 C1 A1	[6]
80.	(i) (ii)	• $10 \times 3 \times 5000 \ (= 150000) \ (1)$ • $(150000) \times 100 \ / \ 85 \ (1)$ • $= 1.8 \times 10^5 \ (1)$ • $F = h c \ / \ \lambda \ (1)$	3	
	(11)	• $E = 6.6 \times 10^{-34} \times 3 \times 10^8 / 4.0 \times 10^{-7} = 4.95 \times 10^{-19} J (1)$ $1.8 \times 10^5 \times 4.95 \times 10^{-19}$ • $= 8.9 \times 10^{-14} W (1)$ ecf (i)	3	
				[6]

81.	Elect r.m.s Elect Slow This Drift	rons h . speec rons m er spec motion veloci	ave high speed random motion; (1) d defined / linked to random motion; (1) nake (random) collisions with atoms; (1) ed motion in opposite direction to current / towards + terminal; (1) n superimposed on the random motion; (1) ity is the <u>mean / average</u> (resultant) velocity (of the free electrons)(1)	max 4	
82.	(a)	DO N powe e.g. i cost o	NOT allow answers which answer the question "Why are er stations near coal mines" nfra structure in place of re-location	2	
	(b)	e.g p smel noise (1) fo	ollution – dirty atmosphere l - cleaning gases still leads to an acidic smell e - running day and night or each fact × 2 + (1) for valid comment	4	
	(c) plenty of cooling water available		1		
	(d)	(i)	knowledgeable use of $P = V \times I(1)$ = 11 000 V × 800 A = 8 800 000 (W) (1)	2	
		(ii)	knowledgeable use of V = I × R (1) = $800 \times 5 = 4000$ (V) (1)	2	
		(iii)	$11\ 000 - 4000 = 7000 \ (V)$	1	
		(iv)	7000 V × 800 A (1) = 5 600 000 (W) (1)	2	
		(v)	5.6 MW / 8.8 MW OR 7000 V / 11 000 V (1) = 0.64 = 64% (1)	2	

[4]

	(e)	working from power lost in the cables (1) power of 2 MW lost in 5 Ω (1) $2 \times 10^6 = I^2 \times 5$ I = $\sqrt{400\ 000} = 632$ A (1) Allow the following (2) marks as e.c.f from incorrect current $1.0 \times 10^8 = V \times 632$ (1)		
		$V = 1.0 \times 10^8 / 632 = 158\ 000\ V\ (1)$	5	[21]
83.	(a)	one (or more) electrons removed (or added) to an atom	1	
	(b)	$E = hf = hc/\lambda \text{ together with knowledge of symbol meaning (1)}$ $= \frac{6.63 \times 10^{-34} \times 3.00 \times 10^8}{238 \times 10^{-9}} (1)$		
		$= 8.36 \times 10^{-19} \text{(J)} (1)$	3	
	(c)	frequency of UV is greater than frequency of light OR alternative statement in terms of wavelength. so photon energy of visible light is less than photon energy of UV (1) PLUS one of the idea of conservation of energy		
		it is not possible for a low energy photon to give a high energy photon this is a one to one process (1)	2	
	(d)	E = V/d and power of 10 correct for d (1) = 30/0.00020 = 150 000 (1)		
		$V m^{-1} (1)$	3	[9]
84.	(a)	Voltmeter connected in parallel with \mathbf{X}	B1	
	(b)	Same reading / no effect / no change	B1	
	(c)	(i) LDR / light-dependent resistor	B1	

(ii)The resistance decreases (as the intensity of light increases)B1(iii) $3.5 - 4.0 \times 10^{-7}$ (m) (to) $6.5 - 7.5 \times 10^{-7}$ (m)B1

(d)	(i)	$R = \frac{V}{V}$	/	$R = \frac{1.8}{1.8}$	(C1
()	()	Ι		$4.8(\times 10^{-3})$		-

	resi	A1	
(ii)	1	C1	
		$Q = 4.8 \times 10^{-3} \times 30$	C1
		charge = $0.144 \approx 0.14$ (C)	A1
	2	W = VQ / $W = VIt$	C1
		$W = 1.8 \times 0.144$ / $W = 1.8 \times 4.8 \times 10^{-3} \times 30$	
		energy = $0.259 \approx 0.26$ (Possible ecf)	A1
		unit: joule / J / VC /VAs	B1
		(Allow 1/3 if power is 0.0086 (W))	

85.	(a) (b) (c) (d)	Kirchhoff's <u>second</u> Ohm's Resistance Electronvolt (Allow eV)	B1 B1 B1 B1
	(d)	Electronvolt (Allow eV)	BI

86. (a) (i)
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$
 / $R = \frac{R_1 R_2}{R_1 + R_2}$ C1
 $\frac{1}{R} = \frac{1}{20} + \frac{1}{30}$ / $R = \frac{20 \times 30}{20 + 30}$
resistance = 12 (Ω) A1
(ii) $R = 10 + 12$
resistance = 22 (Ω) (Possible ecf) B1
(b) $R = 10$ (Ω) / Resistance between B and C = 0 M1

b)
$$R = 10 (\Omega)$$
 / Resistance between B and C = 0 MI
 $I = \frac{5.0}{10}$
reading = 0.5 (A) A1

Ambrose College

[5]

[13]

[4]

87.	Any	<u>four</u> from:	$B1 \times 4$
	1.	(As temperature increases) the resistance of the thermistor / T d	lecreases
	2.	The total resistance decreases	(Possible ecf)
	3.	The current increases (in the circuit)	(Possible ecf)
	4.	The (voltmeter) reading increases / voltage across R increases	(Possible ecf)
	5.	The voltage across the thermistor / T decreases	(Possible ecf)
	6.	Correct use of the potential divider equation / comment on the ' of voltage / correct use of $V = IR$	sharing'

[4]

[3]

88. (a)
$$R = \frac{pL}{A}$$
 (Allow any subject) B1
(b) The resistance decreases M1
by a factor of four (because resistance is inversely proportional to radius²) A1

89. (i)
$$2200 = \frac{3.5 \times 10^{-5} \times 1.3 \times 10^{-2}}{A}$$
 / $A = \frac{\rho L}{R}$ C1

$$(A =) \ \frac{3.5 \times 10^{-5} \times 1.3 \times 10^{-2}}{2200}$$
C1

$$(A =) 2.07 \times 10^{-10} \text{ (m2)} \approx 2 \times 10^{-10} \text{ (m}^2)$$
 A0

(ii)
$$P = I^2 R$$
 / $P = VI \text{ and } V = IR$ C1
 $0.50 = I^2 \times 2200$ C1
current = 0.015 (A) A1

current = 0.015 (A) (2.23 × 10^{-4} scores 2/3 – answer not square rooted)

[5]

0.	Elect	tromagnetic waves - Any two from:	31 × 2	
	1.	EM wave / light behave like 'particle'/ photon / quantum of energy		
	2.	$E = hf/E = hc/\lambda$		
	3.	<i>E</i> is the energy of <u>photon</u> and <i>f</i> is the frequency (of EM waves) / λ is the wavelength		
		Moving electrons - Any four from:	31 × 4	
	4.	Moving / travelling particle / electron behaves like a wave		
	5.	Mention of the <u>de Broglie</u> (equation)		
		<i>h</i>		
	6.	$\lambda = \frac{1}{mv}$		
	7.	λ is the wavelength of particle/electron, <i>m</i> is the mass (of particle)		
		and v is speed		
	8.	Electrons can be diffracted (Can score on diagram)		
	9.	Electrons travelling through matter /graphite (show diffraction effects)		
		(Can score on diagram if not scored in 8 above)		
	10.	Electrons diffract because their wavelength is comparable to the size of atoms		
		/gap between atoms (Do not allow 'particles in place of atoms)		
	QW	C Spelling, punctuation and grammar	B1	
		Organisation	B1	
		-	[8]

91.	(i)	The minimum frequency needed to free an electron	
		(from the surface of a metal)	B1
	(ii)1	Line extended intersects (the f axis at) this value / At this frequency, $E_k = 0$	B1
	(ii)2	$(\phi =) h \times 5.0 \times 10^{14}$ / $(\phi =) 6.63 \times 10^{-34} \times 5.0 \times 10^{14}$	C1
		work function energy = 3.3×10^{-19} J	A1
	(iii)1	1 The gradient / slope of the line is the same	B1
		The gradient is equal to h / independent of the metal	B1
	(iii)2	The line is shifted to the right	B1
		The threshold frequency is greater (AW)	B1

92.	(i)	wave sources that have a constant phase difference (WTTE)	B2	
		{max of 1 mark for sources have same frequency/wavelength/in phase C1}		
	(ii)	sum of <u>displacements</u> (= resultant displacement) (WTTE) (no marks for reference to amplitude)	B1	
				[3]

[8]

03	(
93.	(1)	constructive interference/waves in phase for maxima	01	
		OR destructive interference/waves 'out of phase'	CI	
		maxima produced when path difference is 0 OR $n\lambda$ (WITE)	Al	
		minima produced when path difference is $(n+1/2) \lambda$ (WTTE)	A1	
		NB answers that do not account for SERIES of both maxima and minima can score maximum of 2 marks only)		
	(ii)	recall of $r = \lambda D/a$	C1	
	(11)	$\{expressed in any form: allow unusual symbols if correctly identified\}$	CI	
		correct substitution: $r = (3.0 \times 50)/6$	Δ1	
		r = 25 cm	A 1	
	(iii)	microwayes vibrate/oscillate/displaced in one plane (WTTE)	B1	
	(111)	{do not allow travel/propagate in one plane}	DI	
		signal decreases to zero (WTTE)	B1	
				[8]
94.	(a)	waves (travel out from centre and) are reflected (WTTE)	B1	
		interference/superpositioning occurs (WTTE)	B1	
	(b)	correct shape drawn	M1	
		N labelled at <u>both</u> ends and A in the middle	A1	
	(a)	wavelength = $0.5 \times 2 = 1.0 \text{m}$ (allow each from (b))	D 1	
	(\mathbf{c})	wavelength $-0.5 \times 2 - 1.0$ failow eet nom (0)}	DI	[5]
				[0]
95.	the s	preading out (WTTE) of waves	B1	
	(reje	ct bending/change in direction)		
	when	n they pass through a gap OR pass a barrier edge	BI	101
				[2]
96.	(i)	semicircular wavefronts leaving the gap	B1	
		no change in wavelength stated OR	D 1	
	()	clearly snown (at least 3 waves needed) – judged by eye	BI	
	(11)	LESS diffraction would occur – shown or stated	BI	
	(;;;)	waverronis mainly <u>plane</u> (by eye) (allow curved at edges)	BI D1	
	(111)	Worke unitation for sound > wavelength of light (WTTE)		
		Wavelength of sound < Wavelength of light or sound with doorway a g	DI	
		doorway of similar size to wavelength of sound OD		

doorway of similar size to wavelength of sound OR

wavelength of light is very small compared to door (WTTE)

[7]

97. (a) 29; 34

2

B1

(b)
$$\lambda = 0.693/T = 0.693/(120 \times 3.2 \times 10^{7}) = (1.8 \times 10^{-10} \text{ s}^{-1}) accept ln 2 1$$

(c) (i) $Q = CV = 1.2 \times 10^{-12} \times 90$; evidence of calculation $(= 1.1 \times 10^{-10} \text{ C})$ 2
(ii) $n = Q/c = 1.1 \times 10^{-10}/1.6 \times 10^{-19}$; $= 6.9 \times 10^{8} allow sig, fig. variations 2
(iii) $A = \lambda N; N = 6.9 \times 10^{8}/1.8 \times 10^{-10}; = 3.8 \times 10^{18} using 7.0 gives 3.9 3$
(iv) 1 y is less than 1% of 120 y so expect to be within 1%/
using e^{-34} gives exactly 1% fall/ problem of random emission
or other relevant statement 1
98. (a) either (If in parallel) when one bulb fails, other bulbs stay on
or (If in parallel) can identify which bulb has failed; (1) 1
(b) (i) $P = VI(1)$
 $0.5 = 240 I$
 $I = 2.1 \times 10^{-3} \Lambda I sf.$ in answer (-1) once only (1) 2
(ii) $R = V/I(1)$
 $-240/(2.1 \times 10^{-3})$
 $= 1.14 \times 10^{5} \Omega \text{ or } 1.15 \times 10^{5} \Omega \text{ ans}$
 $accept (1.1 \text{ to } 1.2) \times 10^{5} \Omega. (1)$ 2
(iii) $A = p I/R(1)$
 $= 1.1 \times 10^{-6} \times 6.0 \times 10^{-3} / (1.14 \times 10^{5}) (= 5.79 \times 10^{-14} \text{ m}^{2})$
 $A = \pi r^{2} (1)$
 $5.79 \times 10^{-14} = \pi r^{2} \text{ so } r = 1.4 \times 10^{-7} \text{ m} (1)$ 3
(iv) filament too thin / fragile to be manufactured / used without damage;
allow eef from (iii). (1)
(1) current is zero (1)
p.d. across (any intact) bulb becomes zero (1)
so all 240 V across Y (1) any 2 4$

(d)	(i)	either or	set B bulb(s) have less resistance (than set A bulbs) adding (each) set B bulb lowers circuit resistance; (1)	
		either or or	so current increases (when set B bulb inserted) p.d. across (each) bulb increases any valid argument using V^2 / R ; (1)	
		so pow	ver dissipation (in any bulb) increases; (1) 3	
	(ii)	set A b	pulbs fail first; (1)	
		Then either	Failure current for set A bulb $I_f = \sqrt{P/R} = \sqrt{0.75/200} = 0.0612$ A; (1) When failure occurs total resistance of set = 240 / 0.0612 (= 3920); (1) Let X be number of 50 Ω bulbs substituted 3920 = 50X + 200(24 - X); (1) so X = 5.87 bulbs, so 5 or 6 bulbs;	
		or	Total initial resistance = $24 \times 200 = 4800 \ \Omega$ After substituting X set B bulbs, resistance = $4800 - 150 \ X$ (1) Current = $240/(4800 - 150 \ X)$ (1) So power in a set A bulb, $P = I^2 R = [240/(4800 - 150 \ X)]^2 \times 200 = 0.75$ for failure (1) This gives X = 5.87 i.e. 5 or 6 bulbs (1) 4	[20]
				[20]

99.	(a)	In the dark few electrons in the conduction band; (1)	
		In daylight light <u>photons</u> provide energy; (1)	
		to promote (many) more electrons from valence band to conduction band; (1)	
		High / low resistance related to few / many conduction band electrons. (1)	4

(b)	(i)	Circuit with battery connected to LDR; (1)			
		Ammeter and voltmeter correctly connected. (1)	2		

(ii)	Control and measurement of light intensity: Arrangement to shield LDR from light from unwanted sources / Carry out experiment in darkened room; (1) Use constant light source placed at variable distance from LDR / Use light source of variable power at fixed distance from LDR; (1) with light meter to record light intensity at position of LDR. (1)		
	Ranges of meters: Voltmeter with range applicable to battery voltage / say 0 - 10 V scale; (1 For maximum light conditions use milliammeter; (1) and for minimum light conditions use microammeter. (1) OR Reference to multimeter to read current (1) with appropriate change of scale. Readings and calculations:)	
	For each position of light source / power value of light source, measure (and record) readings from light meter; (1) Read (and record) readings from voltmeter and ammeter and calculate resistance using $R = V/I$. (1)	8	[14]
Corre	ect direction shown (anticlockwise)	B1	

(ii)	(ii) Direction in which positive charges / ions move / Direction / flow / current / from positive to negative / Flow of (positive) charge from positive to			
	negative	/ Direction / flow opposite to electron flow	B1	
(iii)	Q = It	(Allow any subject with or without delta notation)	C1	
	$I = \frac{0.76}{5.0 \times 10^{-10}}$	5 60	C1	

current =
$$2.53 \times 10^{-3}$$
 (A) $\approx 2.5 \times 10^{-3}$ (A)
(0.152 / 0.15 (A) scores 1/3) A1

[5]

100. (i)

101.	Any three p	properties from:	(-1 for each error or contradiction)	$B1 \times 3$	
	1.	Travel at the speed of ligh	$t/c/3 \times 10^8 \text{ m s}^{-1}$ (NOT 'same speed')		
	2.	Travel through vacuum / 'free space'			
	3.	Have oscillating electric and magnetic fields			
	4.	They are (all) transverse w	vaves / can be polarised		
	5.	Allow: 'They show diffrac	ction / reflection / refraction / interference'		
	6.	Allow: 'Consist of photon	s'		
	Any three regions from the list below:			B1 × 3	
	Gamma (rays / radiation) / γ (rays) ; X-rays ; u.v ; ir ; microwaves ; radio waves (NOT 'radio')				
	<u>One</u> suitabl	e application for the opted r	egion.	B1	
	(E.g.: Gamma rays for radiotherapy / sterilisation; X-rays for taking pictures of skeleton / bones; u.v for tanning; ir for TV remote control; microwaves for cooking / mobile phones; radio waves for communication)				
	(Note: Refe	erence to alpha, beta and gar	nma can only score the last marking point)		

102. (a)		current \propto p.d / voltage (for a metallic conductor)	M1
		as long as temperature is constant / physical conditions remain constant	A1

(b) (i)
$$(R =) \frac{0.15}{4.3} (= 0.0349)$$
 B1

(ii)
$$R = \frac{\rho L}{A}$$
 (Allow any subject) C1

$$\rho = \frac{RA}{L} = \frac{0.035 \times (0.012 \times 0.012)}{0.09}$$
C1

resistivity = 5.6×10^{-5} A1

unit: ohm metre / Ω m (Allow V m A⁻¹) A1

 $(5.6 \times 10^{-n} \text{ without unit or incorrect unit and } n \neq 5 \text{ or } 3 - \text{can score } 2/4)$ $(5.6 \times 10^{-3} \Omega \text{ m} - \text{can score } 3/4)$ $(5.6 \times 10^{-3} \Omega \text{ cm} - \text{can score } 4/4)$

[7]

[7]

103. (a) Parallel

(b) (i)
$$I = \frac{12}{8.0}$$
 C1

$$current = 1.5 (A) A1$$

B1

(ii)
$$P = \frac{V^2}{R}$$
 / $P = IV$ $P = I^2 R$ C1

$$P = \frac{12^2}{8}$$
 / $P = 1.5 \times 12$ $P = 1.5^2 \times 8.0$ (Possible ecf) C1

$$power = 18 (W)$$
 A1

(iii)
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + (\frac{1}{R_3})$$
 / $\frac{1}{R} = \frac{1}{8} + \frac{1}{8} + \frac{1}{8}$ C1

$$\frac{1}{R} = 3 \times \frac{1}{8}$$
C1

resistance =
$$2.67 \approx 2.7 (\Omega)$$
 (Allow answer expressed as 8/3) A1 (0.375 or 3/8 scores 2/3)

(iv) energy = $0.018 \times 12 \times 3$ energy = $0.648 \approx 0.65$ (kW h) (Possible ecf) A1 (0.22 (kW h) scores 1/2) (648 (kW h) scores 1/2) (2.3 × 10⁶ (J) scores 1/2)

(c) It will be brighterB1The current is larger / correct reference to:
$$P \propto 1 / R$$
B1[13]

104.	current <u>and</u> current	B1	[1]
105.	energy	B1	[1]

106.	(i)	(NTC	C) thermistor	B1
	(ii)	Resis (Allo	stance decreases when temperature is increased. (ora) w correct credit for a PTC thermistor)	B1
	(iii)	1	I = (0.032 - 0.006 =) 0.026 (A)	B1
		2	$(V_{200} = 0.026 \times 200 =) 5.2 \text{ (V)} / (V_{720} = 0.006 \times 700 =) 4.2 \text{ (V)}$	C1
			E = 5.2 - 4.2 (Allow $E = 4.2 - 5.2$)	C1
			E = 1.0 (V) (Allow 1 sf answer)	A1
			(9.4 (V) scores 1/3)	

107. Maximum of three from points 1 to 6:

- Photon mentioned (e.g.: photons interact with the surface electrons) 1. Energy is conserved (between the photon and the electron / in the interaction) 2.
- 3. $hf = \phi + KE_{(max)}$
- 4. A single photon interacts with a single electron / It is a one-to-one interaction
- Electron is removed when photon energy is greater than / equal to the 5. work function (energy) / ϕ (Allow ora) 6. Electron removed when frequency is greater than / equal to the threshold
- frequency (Allow ora) 7. (Visible) light has lower frequency than the threshold frequency / Energy of
- (visible) light photon is less than the work function (energy) (ora with uv) **B**1 8. Greater intensity of (visible) light means more photons (per unit time) / energy of a photon remains the same **B**1 QWC Spelling, punctuation and grammar **B**1 B1
 - Organisation

kinetic energy = $1.5 \times 1.6 \times 10^{-19}$ **108.** (i) C1 kinetic energy = 2.4×10^{-19} (J) A1

(ii)
$$E = hf$$
 $/E = \frac{hc}{\lambda}$ $/f = 7.69 \times 10^{14} (Hz)$ $/$ $(E =) 5.1 \times 10^{-19} (J)$ C1

$$\phi = 5.1 \times 10^{-19} - 2.4 \times 10^{-19}$$
 (Possible ecf) C1

work function energy =
$$2.7 \times 10^{-19}$$
 (J) A1 [5]

 $B1 \times 3$

[6]

[7]

109. 🗸

 \checkmark

×

×

(Four correct: 3 marks, three correct: 2 marks, two correct: 1 mark)	B3	
		[3]

110.
$$\lambda = \frac{h}{mv}$$
 $/\lambda = \frac{h}{p}$ (Any subject) C1

$$v = \frac{6.63 \times 10^{-34}}{6.8 \times 10^{-11} \times 2.0 \times 10^{-26}}$$
C1

111.	Maximum of 2 marks for correctly identifying the 4 errors OR stating the 2 correct notes: i.e. errors in notes 1, 2, 3, and 6 (shown anywhere) {5 or 6 or 2 or 1 notes nominated scores ZERO, 4 correct scores 2, 3 correct scores 1}	B2
	Valid corrections score 1 mark each: do not allow "NOT" corrections apart from note 3 Note 1: In longitudinal waves vibrations are <u>parallel</u> to wave direction (WTTE) {OR in <u>transverse</u> waves vibrations are perpendicular to wave direction (WTTE}	B1
	Note 2 <u>light</u> (or any of the <u>em waves</u>) can travel through a vacuum (WTTE) {allow sound/longitudinal waves cannot travel thro' a vacuum}	B1
	Note 3: waves carry energy/disturbance (not displacement or info) from (WTTE) {allow "waves do not carry the medium" and "the medium carries the waves from"}	B1
	Note 6: wavelength = distance from crest to crest/trough to trough/max to max (WTTE)	B1

Ambrose College

[6]

112.	diagram showing		
	laser/light source placed directly behind double slit AND screen placed		
	in front of slits	B1	
	{single slit NOT required; no labelling required}		
	(i) D: allow any value between 30cm and 10m	B1	
	(ii) a: allow any value between 0.1mm and 2mm	B1	
			[3]

113.	(a)	(i)	evidence of good practice: i.e distance for nx measured e.g.	
			5x = 18mm	C1
			x = 3.6 mm (OR 3.5 OR 3.7)	A1
			$\{x = 3.4, 3.8, 3.9, 4.0, or 4 mm, implying \times is directly\}$	
			measured, and score 1 mark)	
		(ii)	for O path difference = 0	B1
			for A path difference = $3(\lambda)$	B1
			for B path difference = $1.5(\lambda)$	B1
	(b)	recal	$l \text{ of } \lambda = ax/D \text{ OR } \times = \lambda D/a \text{ OR } \times \propto \lambda$	B1
		λ is s	maller for blue light (than red light) hence × is SMALLER (WTTE)	B1

[7]

114.	ANY valid differences: e.g. Sound is longitudinal (light is not) OR light is transverse (sound is not) OR sound waves have longer wavelengths' OR sound travels much slower Light can be polarised (sound cannot) Light can travel though a vacuum, (sound cannot)	B1 + B1	[2]
115.	circular arcs (penalise anything flat) same constant wavelength before and after gap – judged by eye or labelled this means at least <u>3 wavefronts need to be drawn</u>	B1 B1	[2]
116.	for noticeable diffraction $\lambda \approx$ gap size (WTTE) λ for sound much bigger than for light (WTTE)	B1 B1	[2]

117. (a) Positive as E-field is downwards/top plate is positive/like charges repel/AW (1) 1

	(b)	(i)	k.e. = QV; = $300 \times 1.6 \times 10^{-19} = (4.8 \times 10^{-17} \text{ J}) (2)$	2	
		(ii)	$1/2mv^2 = 4.8 \times 10^{-17}$; = 0.5 × 2.3 × 10 ⁻²⁶ × v ² so v ² = 4.17 × 10 ⁹ ; (giving v = 6.46 × 10 ⁴ m s ⁻¹) (2)	2	
	(c)	E = 1	V/d; so d = V/E = 600/4 × 10 ⁴ = 0.015 m (2)	2	
	(d)	(i)	semicircle to right of hole (1) $ecf(a)$; (a) and $d(i)$ to be consistent	1	
		(ii)	mv^2/r ; = BQv; (2) giving r = $mv/BQ = 2.3 \times 10^{-26} \times 6.5 \times 10^4/(0.17 \times 1.6 \times 10^{-19})$; (1) r = 55 mm;so distance = 2r = 0.11 m (2)	5	[13]
118.	(a)	Light Light	t energy is <u>reflected</u> or t energy is absorbed and converted to <u>heat</u> or thermal energy	1	
	(b)	(i)	Minimum surface area = $360 / 1500 \times 100/16$ (1) = 1.5 m^2 (1)	2	
		(ii)	The satellite will sometimes be in the shadow cast by Earth - so no sunlight (or not in direct sunlight) The electrical circuits or battery are not themselves 100% efficient - energy wasted as heat Satellite requires extra power for position control or other stated function Panels may not be perpendicular to sunlight Radiation damage (from cosmic rays) reduces number of useful cells (ignore any reference to any variation in solar output) <i>Any two</i>	2	[5]
119.	(a)	The i The a	ntensity of sunlight is too small (inverse square law) or area of panel required would be too large/massive to launch	1	
	(b)	(i)	Energy required = V I t = $12 \times 5 \times 120 \times 60$ (1) = 4.32×10^5 J (1)	2	

- (ii) Steady power required = $(4.32 \times 10^5 \times 100/25) \div 24 \times 3600$ (2) = 20 W (18.5W if 0.40 MJ used) (or P = VI = $12 \times 5 = 60$ W for 2h so only 5W for 24h if 100% efficient but = 5 / 0.25 = 20W)
- (iii) Energy carried by alpha = $5 \times 10^{6} \times 1.6 \times 10^{-19} = 8.0 \times 10^{-13} \text{ J} (1)$ Activity required = $20 \div (8 \times 10^{-13})$ = $2.5 \times 10^{13} \text{ Bq} (1)$ (or $0.432 \text{ MJ} / 8 \times 10^{-13} \text{ J}$ alphas per day = $0.432 \text{ MJ} / 8 \times 10^{-13} / 24 \times 3600$ alphas per sec)
- (c) Decay constant of Pu 238 = $0.69 / T_{\frac{1}{2}}$ = $0.69 / 88 \times 365 \times 24 \times 3600$ = $2.5 \times 10^{-10} \text{ sec}^{-1}$ (2) (allow mark for conversion of 88 years to 2.78×10^{9} seconds) Number of nuclei required = A / λ = $2.5 \times 10^{13} / 2.5 \times 10^{-10}$ (1) = 1.0×10^{23} (1) (allow mark for formula A = λ N) Mass required = $1.0 \times 10^{23} \times 238 / 6.02 \times 10^{23}$ (1) = 40 gms = 0.040 kg (1) 6
- (d) On launch, the rocket gives the spacecraft a huge kinetic energy (in order to escape)
 Failure at this point could cause spacecraft and contents to "burn up" in atmosphere
 But plutonium would still be radioactive and being vaporised it could be ingested.
 Sensible comment on danger periods of launch (or re-entry)
 Sensible comment on mechanism of ingesting Plutonium
 Allow one sensible comment on no risks in the isolation of deep space

120.
$$3.9 \text{ eV} = 3.9 \times 1.6 \times 10^{-19} \text{ J} (= 6.24 \times 10^{-19} \text{ J}) (1)$$

 $\lambda = \text{hc/E} = 6.63 \times 10^{-34} \times 3.0 \times 10^8 / 3.9 \times 1.6 \times 10^{-19} (= 320 \times 10^{-9} \text{ m}) (1)$
[2]

2

2

121. With no current in the wire:

r.m.s.speed is square root of mean of squares of the speed of free electrons; (1) r.m.s. speed depends on / increases with increasing temperature; (1) free electrons move (fast) in random directions; (1) colliding with atoms (in the lattice); (1)

With current in the wire:

free electrons move in opposite direction to current / electric field; (1) free electrons accelerate between collisions with atoms; (1) this motion is superimposed on the random motion; (1) Drift velocity is the mean value of electrons' velocities due to this motion; (1) value depending on current, cross-section of wire, free electron concentration and electron charge / I, A, n and e. (1)

122. (i) n = I/Aev(1)= 0.75 / (4.0 × 10⁻⁷ × 1.6 × 10⁻¹⁹ × 1.4 × 10⁻⁴) = 8.4 × 10²⁸ (1)

	2 drift velocity = $3.5 \times 10^{-5} \text{ m s}^{-1}$ (1)	2
(ii)	1 drift velocity = $4.7 \times 10^{-5} \text{ m s}^{-1}$ (1)	

123.	(a)	(i)	use of area beneath graphs (1) acceleration section 125 m and deceleration section 50 m (1) constant velocity sections and total 50 m + 200 m + 125 m + 50 m = 425 m (1)	3
		(ii)	 2 straight line sections correct (1) 2 acceleration / deceleration sections correct (1) smooth transition between sections OR zero speed at end (1) 	3
	(b)	(i)	at least three points correctly calculated and drawn (1) straight line towards origin (1)	2
		(ii)	240 (V) (1)	1
		(iii)	gradient is reciprocal of the e.m.f. (1)	1
	(c)	(i)	e.g. $\frac{0.18 - 1.16}{7.2 - 6.7} = -\frac{0.98}{0.5} = -1.98$ correct approach for gradient (1) 1.96, 1.97, 1.98 as values for accuracy mark (1) - sign scores 1 (1)	3

max 7

2

[7]

	(ii)	$g \alpha 1/r^2$ OR g inversely proportional to the square of the distance from the centre of the Earth (1)	1	[14]
124.	Electron fl	ow is in opposite direction (to conventional current)	B1	[1]
125.	Correct sy (Resistanc brightness	mbol for the LDR e of LDR) decreases with increased intensity / / light (AW)	B1 B1	
	U			[2]
126.	current \propto p (provided (voltage =	b.d. (Allow 'voltage' instead of p.d.) the) temperature (of metallic conductor) remains constant current × resistance scores 0/2)	B1 B1	
	(V = IR an)	d $R = \text{constant}$ scores 0/2)		[2]
127.	(i) 1. 2.	<i>R</i> - <i>V</i> graph for metallic conductor: shows $R = \text{constant} / \text{'horizontal line'}$ <i>R</i> - <i>V</i> graph for thermistor: shows <i>R</i> has a finite value at $V = 0$	B1	
	(ii) 1.	shows <i>R</i> has a <u>limite</u> value at $V = 0$ shows <i>R</i> decreases as <i>V</i> increases (Allow a 'curve' or 'straight line') Any <u>two</u> from: The resistances larger / line (graph) higher (and horizontal) (Can score on Fig.1.2a)	B1 B1	
	2	The electrons collide more often / frequently (with vibrating atoms) The atoms / ions vibrate 'more' (Do not allow ' <i>particles</i> ' vibrate) I The resistance increases / doubles (Can be scored on Fig. 1.2a)	B1 × 2 M1	
	2.	Mention of: $R \propto L$ or $R = \frac{\rho l}{A}$	A1	[7]

[1]

B1

129. (i) 1. time =
$$4.0 \times 7 = 28$$
 (hours) / power = 0.11 (kW) C1
number of kW h = 0.110×28
number of kW h = $3.08 \approx 3.1$ (If 4 hours used, them 0.44 scores 1/2) A1
2. cost = 3.08×7.5 (Possible ecf)
cost = 23 (p) B1
(ii) $Q = It$ (With or without Δ notation) C1
 $Q = 0.48 \times 28 \times 3600 / Q = 0.48 \times (1.008 \times 10^5)$ (Allow $t = 1 \times 10^5$ (s)) C1
 $Q = 4.84 \times 10^4 \approx 4.8 \times 10^4$ (C) A1
(If $t = 28$ used, then $Q = 13.4$ allow 2/3)
(If $t = 4$ used, then $Q = 1.92$ allow 1/3)
(If 1.44×10^4 s used, then 6.91×10^3 scores 2/3)

(iii) 1.
$$E = hf / E = \frac{hc}{\lambda} / f \approx 5.4 \times 10^{14} (\text{Hz})$$
 C1

$$E = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{5.5 \times 10^{-7}} / E = 6.63 \times 10^{-34} \times 5.455 \times 10^{14}$$
C1

$$E = 3.62 \times 10^{-19} \approx 3.6 \times 10^{-19} \,(\text{J})$$

2. number =
$$\frac{8.0}{3.62 \times 10^{-19}}$$
 C1

number =
$$2.21 \times 10^{19} \approx 2.2 \times 10^{19} (s^{-1})$$
 (Possible ecf) A1 [11]

Ambrose College

130. (a) **Maximum** of **five** marks

Up to <u>four</u> from:

$\lambda = \frac{h}{h}$	$\lambda = \frac{h}{2}$	M1
mv	p	

All symbols (λ , h , m and v or p) defined	A1
Electrons travel / move / propagate (through space) as a wave	B1
Electrons are diffracted / 'spread out'	M1
by the atoms / spacing between the atoms	A1
The electrons are diffracted when their wavelength is less than or	
comparable or same as size of atoms / gap between the atoms	B1
Up to <u>two</u> from:	
When the speed of electrons is increased) the rings 'get smaller'	B1
(At greater speed of electrons) the wavelength is shorter	B1
(At greater speed of electrons) there is less diffraction	B1
QWC Organisation Spelling, punctuation & grammar	B1 B1
Electrons have mass / momentum / charge / can be 'accelerated'	B1

131.	For e.m.f. the energy transfer to electrical / from other forms or 'charges gain energy'		
	Or		
	For p.d. the transfer is from electrical / to heat / to other forms or 'charges lose energy'	B1	[1]
132.	The sum of currents entering point / junction is equal to the sum of currents out of that point / junction	B2	
	(The algebraic sum of current at a point = 0 scores $2/2$)		
	(-1 if sum is not mentioned and -1 if point / junction is not mentioned)		[2]

(b)

[8]

133. (i) current =
$$0.80 - 0.20$$

current = 0.60 (A) B1

(ii)
$$V = IR$$
 / $V = 0.60 \times 18$ (Possible ecf) C1
 $V = 10.8 \approx 11$ (V) A1

(iii)
$$R_{\rm T} = \frac{10.8}{0.20} = 54 \ \Omega$$
 (Possible ecf) C1

$$R_{\text{diode}} = 54 - 46$$

$$R_{\rm diode} = 8.0 \; (\Omega) \tag{A1}$$

(Alternatively:
$$V_{46\Omega} = 46 \times 0.20 = 9.2$$
 (V) C1

$$V_{\text{diode}} = 10.8 - 9.2 \ (= 1.6)$$
 C1

$$R_{\rm diode} = \frac{1.6}{0.20} = 8.0 \; (\Omega) \qquad \qquad \text{A1}$$

(iv)
$$P = \frac{V^2}{R}$$
 / $P = I^2 R$ / $P = VI$ C1
 $P = 0.20^2 \times 8.0$ (Possible ecf)
 $P = 0.32$ (W) A1

134.	(i)	Photoelectric (effect)	B1
------	-----	------------------------	----

(ii)
$$10^{-9} \text{ (m)} \le \text{wavelength} \le 4 \times 10^{-7} \text{ (m)}$$
 B1 [2]

135.	(i)	(Minimum) energy needed to free an elect	ron /an electron to escape		
		(from the metal surface)		B1	
	(ii)	speed of light / 3×10^8 (m s ⁻¹) / c		B1	
	(iii)	1. $hf = \phi + KE_{(max)}$ (A	llow any subject)	C1	
		$KE_{max} = 2.8 - 1.1 = 1.7 (eV)$		C1	
		$KE_{max} = 1.7 \times 1.6 \times 10^{-19}$			
		$KE_{max} = 2.7 \times 10^{-19} (J)$		A1	
		2. $\frac{1}{2}mv^2 = 2.7 \times 10^{-19}$ (Pe	ossible ecf)	C1	
		$v = \sqrt{\frac{2 \times 2.7 \times 10^{-19}}{9.1 \times 10^{-31}}}$			
		$v = 7.7 \times 10^5 (m s^{-1})$		A1	
	(iv)	No change (because the energy of the phot	on remains the same)	B1	101
					[8]
136.	(i)	any valid example - e.g. LIGHT, MICROV (allow "water" /"sea" but reject 'slinky' un	VAVES (any em waves) less explained/shown)	B1	
	(ii)	any valid example: e.g. SOUND	/ ··· · · · · · · · · · · · · · · · · ·	B1	
		(allow 'pressure wave'; reject "water" and	'slinky' unless explained/shown)		[2]
137.	(i)	<i>transverse</i> = vibrations perpendicular to wa (allow "motion is perpendicular to wave", : e.g. "vibrate up + down")	ave (direction) (WTTE) reject vague answers:	B1	
	(ii)	<i>longitudinal</i> = vibrations parallel to wave of (allow "motion is perpendicular to wave" r "vibrate back and for)	lirection (WTTE) eject vague answers: e.g.	B1	

[2]

138.	(a)	(i)	amplitude correctly labelled (by A or in words) (reject "A" as a point i.e. with no arrows)	B1	
		(ii)	wavelength correctly labelled (by λ or in words)	B1	
	(b)	(i)	same shape moved slightly to the right consistently drawn for both waves (do not allow shift of more than ¼ wavelength)	B1 B1	
		(ii)	movement is VERTICAL Q moves UP ↑ <u>AND</u> S moves DOWN ↓ shown	M1 A1	
	(c)	phase {allo	e difference = 180° (degrees) OR π w "in antiphase" do not allow "out of phase"}	B1	
	(d)	(i)	recall of $T = 1/f$	C1	
			T = 1/25 = 0.04 s	A1	
		(ii)	recall of v= f λ valid substitution: e.g. v = 25 × .036 v = 0.90 ms ⁻¹	C1 C1 A1	
			(there are 2 possible errors – incorrect wavelength and wrong units, so v = 90 m/s scores 2 marks $v = 0.45 \text{ m/s}$ scores 2 marks but allow 3 marks for ecf from cand's λ in (a) (ii) $v = 45 \text{ m/s}$ scores 1 mark but allow 2 marks for ecf from cand's λ in (a) (ii)		
	(e)	(i)	any valid suggestion: e.g. change depth of water	B1	
		(ii)	wavelength will reduce	C1	
			{OR new wavelength = 1.8 cm OR half cand's value shown in (d) ii}	A1	[15]

139. <u>COHERENT</u> (allow coherence)

[1]

B1

140.	constructive interference: valid diagram and/or explanation: e.g.	
	when waves (from coherent sources) meet in phase (or $n\lambda$ path diff.)	B1
	waves reinforce: resultant has increased displacement/amplitude	B1
	correctly shown on diagram or stated	
	<i>destructive interference</i> : valid diagram and/or explanation: e.g.	
	when waves meet in antiphase/180° phase diff. {or $(n + 1/2) \lambda$ path diff.}	B1
	waves cancel: resultant has reduced displacement/amplitude	B1
	correctly shown on diagram or stated	

141. diagram:

laser OR light source and single-slit in front of double slit	B1
screen (WTTE) (or travelling microscope) behind double-slit	B1
(if 'screen' is not labelled mark can be obtained by reference to 'screen' in text)	
measurements:	
measure distance between double-slit and screen	B1
measure distance between neighbouring dark/bright images	B1
(allow 'fringe spacing' or measure distance for n fringes)	
formula:	
recall of $\lambda = ax/D$	B1
ALL symbols correctly defined	
a = distance between slits	}
x = fringe separation (WTTE)	} B1
D = distance between slits and screen	}
(If candidate uses their own symbols they must be used correctly to score the formula recall mark)	
(do not penalise careless use of d and D: i.e. being interposed)	

[4]

[6]

142.	Diagram showing or description of incident beam scattered by or	
	diffracted through crystal at only certain angles;	1
	moveable detector to measure angles;	1
	electrons are scattered from crystal planes like a diffraction	
	grating/because of the regular array of atoms;	1
	constructive interference only occurs at certain angles; depending on λ	1
	and d;	1
	pattern of maximum signals can be very complex depending on	
	structure/AW;	1
	must achieve λ of the order of d for significant scattering;	1
	size of pattern depends on ratio of λ/d or maxima occur at angles of about $n\lambda/d$;	1
	de Broglie's relation p = h/λ for electrons shows why different energies	
	are needed with this detail worth 2 marks;	2
	further detail, e.g. electrons accelerated to MeV for nuclei or a few keV	
	for atomic spacing	1
	as λ is known d can be found max 5	1
	Quality of Written Communication	2

143.	(a)	v = =	dist. / time (or implied by answer) 54×10^3 / 3600
	(b)	(i)	$v^2 = u^2 + 2$ as a = 15 ² / 2 × 1.25 = 90 m s ⁻² (ignore any -ve sign)
		(ii)	v = u + at or s = $\frac{1}{2}$ (u + v) × t (any other equation used must show correct substitution to gain mark) t = 15 / 90 = 0.167 s = 167 m s
	(c)	(i)	$F = k \times$ = 30 × 0.036 = 1.08 N
		(ii)	deceleration a = F / m = $1.08 / 0.120 = 9.0 \text{ m s}^{-2}$
	(d)	P_1V_1	= P_2V_2 or PV / T = constant (or implied by answer)

(d) $P_1V_1 = P_2V_2 \text{ or } PV / T = \text{constant (or implied by answer)}$ 1 $Pressure = 250 \times 10^3 \times (0.06 + 0.0003) / 0.0003$ = 50 MPa 1 [7]

(e)	PV =	nRT n	$= 50 \times 10^6 \times 0.0$	003 / 8.3 × (273 + 17)	1	
			= 6.23 moles			
		number of molecules	$= 3.75 \times 10^{24} \text{ m}$	olecules	1	
		Loss	$=20\% \times 3.75 \times$	10^{24} / 4 × 7 × 24 × 3600	1	
			$= 3.1 \times 10^{17} \text{ mol}$	lecules sec ⁻¹	1	
	For it	ncorrect answer, allow	correct process	to calculate the number of moles	1	
			correct conversi	on of moles to molecules	1	
			correct use of th	e 20%	1	
			correct use of 24	41920 seconds	1	
(f)	(i)	Resistance of filament	$= \rho L / A$		1	
			$= 1.5 \times 10^{-6} \times 0$	$.022 / 2.75 \times 10^{-8}$	1	
			= 1.2 Ω			
	(ii)	Current in filament	$= 12 V / 1.2 \Omega$	= 10 A		
		Power	$= 12V \times 10A$	= 120 W	1	
		Time for detonation	= energy / power	= 0.96 / 120	1	
			= 8 m s		1	
						[20]

144. (i)
$$v = I / nAe = 0.0025 / (8.5 \times 10^{28} \times 1.1 \times 10^{-7} \times 1.6 \times 10^{-19}) (1)$$

= 1.67 × 10⁻⁶ m s⁻¹ (1)

(ii) Free electron concentration (or wtte) is much smaller in the thermistor than in the wire.

145. (a) Kirchhoff's (first) law OR conservation of charge (1) for electric current into house must equal current out of house (1) need for difference in potential for a current (1) gas supply is used in the house (chemically) (1) waste gas (combustion products) go up the chimney (1) MAXIMUM 3

(b) (i) unit of Q/t is J s⁻¹ unit of A is m² unit of $(\theta_2 - \theta_2) / d$ is K m⁻¹ (allow °C m⁻¹) (1) reorganise to unit of k is J s⁻¹ / m² K m⁻¹ (1) unit of k = J s⁻¹ m⁻¹ K⁻¹ OR W m⁻¹ K⁻¹ OR kg m s⁻³ K¹ (1) 3

2

1

3

[3]

		(ii) $Q/t = 0.35 \times 12 \times (22 - 8)/0.10$ (1) = 588 J s ⁻¹ or 588 (W) (1)	2	
	(c)	(i) $Q/t = I = V/R$ $R = \rho l/A$ (1) $Q/t = AV/\rho l$ (1)	2	
		(ii) 1. $(\theta_2 - \theta_2)$ OR temperature difference (1) 2. $1/k$ (1)	2	
	(d)	(i) $V/t = Ap/cl \text{ OR } m/t = Ap/cl (1)$ where V/t is volume of gas per unit time m/t is mass of gas per unit time c is a constant and (1) p is the pressure (difference) (1)	3	
		(ii) $V_1 / 160 = 22^2 / 15^2 (1)$ $V_1 = 160 \times 484 / 225 = 344 (cm^3 s^{-1}) (1)$	2	[17]
146.	(i)	shortest: gamma (1) allow any wavelength between 10^{-12} and 10^{-16} (m) (1) longest: radio (1) allow any wavelength between 10^2 and 10^5 (m) (1)	4	
	(ii)	candidates ratio e.g. $10^4 / 10^{-14} = 10^{18} (1)$	1	
	(iii)	e.g. $10^{18} = 2^{x} (1)$ x = 18/lg 2 = 60 (1)	2	
	(iv)	knowing equation and what each term means (1) e.g. $E = hc/\lambda = 6.63 \times 10^{-34} \times 3.0 \times 10^8 / 10^{-14}$ $E = 2 \times 10^{-11}$ (1)	2	[9]

147.	e.g. all are transverse waves (1) so all can be polarised (under suitable conditions) (1) all can travel in a vacuum (1) at the same speed (1)		
	MAXIMUM 2 for first part	2	
	Discussion of other wave phenomena and how they change as wavelength changes e.g. diffraction refraction or such things as the sensitivity of the eye to certain wavelengths photographic film for certain wavelengths heating effect, particularly of infra-red radio and its effect on electrons quantum effects – minimal for radio, predominant for gamma		
	4 marks can be given as 2,2 or 2,1,1	4	
	i.e. 2 topics dealt with fully or (1) topic dealt with fully and 2 topics outlined		[6]
148.	$3 \times 10^8 \text{ (ms}^{-1})$ (Do not allow 'speed of light' / c)	B1	[1]

149.	(i)	$v = f\lambda$	C1	
		$3.0 \times 10^8 = f\lambda$ / $3.0 \times 10^8 = f \times 8.8 \times 10^{-7}$ frequency = 3.41×10^{14} (Hz) $\approx 3.4 \times 10^{14}$ (Hz)	A1	
	(ii)	(e.m.f=) $\frac{W}{Q}$, with W = energy (transformed to electrical) and		
		Q = charge	(B1)	
		Or		
		Energy transformed by / per unit charge / 1C (from chemical to electrical) (Allow: 'energy gained by / per unit charge / 1C / one coulomb')	B1	
	(iii)	$I = \frac{\Delta Q}{\Delta t}$ Allow any subject, with or without Δ notation	B1	
	(iv)	$Q = 1.4 \times 10^{-3} \times 0.20$	C1	
		charge = 2.8×10^{-4} (C)	A1	
	(v)	W = VQ / energy = VQ	C1	
		$W = 3.0 \times 2.8 \times 10^{-4}$ energy = 8.4 × 10 ⁻⁴ (J) (Possible ecf)	A1	

Ambrose College

B1

[8]

B1

151. (i)
$$R = \frac{\rho L}{A}$$
 (Allow any subject)
 $\rho = \frac{0.54 \times [\pi \times (0.135 \times 10^{-3})^2]}{1.8}$ C1
 $\rho = 1.72 \times 10^{-8} \approx 1.7 \times 10^{-8}$ (Deduct one mark for 10^n error) A1
 $(\rho = 6.87 \times 10^{-8} \approx 1.7 \times 10^{-8}$ scores 2/3 if 'diameter' is used)
 $(\rho = 1.72 \times 10^{-5} \Omega \text{ mm} \text{ scores 4/4})$
unit: $\Omega \text{ m}$ B1
(ii) Any four from: (Allow AW)
1. Resistance of the wire increases (as the temperature is increased) B1
2. The current decreases / the ammeter reading falls B1
3. The decrease in current justified in terms of ' $I = V/R$ ' B1
4. The voltage remains the same / the voltmeter reading remains the same B1
5. The electrons (within the wire) collide more (often with the atoms) /
the atoms vibrate more (Do not allow 'particles' vibrate more) B1
QWC for 'spelling and grammar' B1

152.
$$E = I(R + r)$$
 or $E = V + Ir$ / $R_T = \frac{1.5}{0.60} = (2.5)$ / $V_R = 1.8 \times 0.6$ C1
1.5 = 0.60 (r + 1.8) / $r = 2.5 - 1.8$ / $r = \frac{1.5 - 1.08}{0.6}$ C1

$$r = 0.70 (\Omega)$$
 (Allow 1sf answer) A1

[3]

[9]

153. (i)
$$P = \frac{V^2}{R}$$
 / $P = VI \text{ and } V = IR$ C1
 $36 = \frac{12^2}{R}$ / $I = 3.0 \text{ (A) hence } R = \frac{12}{3.0}$
resistance = 4.0 (Ω) (Allow 1 sf answer) A1
(ii) $R_{\text{series}} = 30 (\Omega)$ C1
 $R = \frac{30 \times 4.0}{30 + 4.0}$ / $\frac{1}{R} = \frac{1}{30} + \frac{1}{4}$ / $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$ C1
resistance = 3.53 \approx 3.5 (Ω) (Possible ecf.) A1

resistance = $3.53 \approx 3.5 (\Omega)$ (Possible ecf) A 12 (Possible ecf)

(iii)
$$l_{lamp} = \frac{36}{12} \text{ or } 3.0 \text{ (A)}$$
 / $l_{20\Omega} = \frac{12}{30} \text{ or } 0.40 \text{ (A)}$ C1

ratio = 7.5 / ratio =
$$\frac{30}{4}$$
 A1

154. (a) No current (in circuit) / 'open' circuit / p.d. between **X** and **Y** is 5.0 V B1

(b)
$$V = \frac{R_2}{R_1 + R_2} \times V_0$$
 / $\frac{V_1}{V_2} = \frac{R_1}{R_2}$ / $I = \frac{3.4}{168} (= 2.02) \times 10^{-2} \text{ mA}$ C1

$$3.4 = \frac{168}{168 + R} \times 5.0 \quad / \quad \frac{1.6}{3.4} = \frac{R}{168} \quad / \quad R = \frac{1.6}{2.02 \, x \, 10^{-2}} \tag{C1}$$

resistance
$$\approx 79 \ (k\Omega)$$
 (Total resistance of 250 k Ω scores 2/3) A1 [4]

Ambrose College

[2]

[7]

(Allow AW)

156. Any <u>six</u> from:

1.	Photoelectric effect is the removal of electrons (from metals) when	
	exposed to light / u.v. /e.m. radiation / photons	B1
2.	Surface electrons are involved / electrons released from the surface	B1
3.	A single photon interacts with a single electron	B1
4.	Energy is <u>conserved</u> (in the interaction)	B1
5.	Energy of photon = hf or $\frac{hc}{\lambda}$	B1
6.	Reference to Einstein's photoelectric equation: $hf = \phi + KE_{(max)}$	C1
7.	photon energy = work function (energy) + (maximum) KE (of electron)	A1
8.	PE effect takes place / electron(s) released when $hf > \phi / hf = \phi /$ frequency	
	is greater / equal to threshold frequency	B1
9.	The (maximum) KE of electron is independent of intensity when electrons	
	are emitted	B1
10	. Intensity increases the rate / number of electrons when emission occurs	B1
11	. PE effect does not take place / no electrons emitted when $hf < \phi$ / frequency	
	< threshold frequency	B1
12	. Intensity has 'no effect' when there is no emission of electrons	B1
QV	WC for 'organisation'	B1

157. (i) 1.
$$E = hf$$
 / $E = \frac{hc}{\lambda}$ / $f = 7.5 \times 10^{17}$ (Hz) C1

('E = hf' can be secured in (i))

$$E = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{4.0 \times 10^{-10}} \qquad / \qquad E = 6.63 \times 10^{-34} \times 7.5 \times 10^{17} \qquad C1$$

energy =
$$4.97 \times 10^{-16}$$
 (J) $\approx 5.0 \times 10^{-16}$ (J)(Allow 1 sf answer here) A1

2.
$$E = \frac{4.97 \times 10^{-16}}{1.6 \times 10^{-19}}$$
 (Possible ecf)

energy =
$$3.1 \times 10^3$$
 (eV)

(ii) The answer to (c)(i)1. and 1.4 (W) are used to determine the rate of photons C1

number =
$$\frac{1.4}{4.97 \times 10^{-16}}$$
 (Possible ecf) C1

number =
$$2.8 \times 10^{15} (s^{-1})$$
 (If 3100 eV is used, then allow 2/3 for 4.5×10^{-4}) A1

[7]

B1

[7]

Ambrose College

159.	(a)	 (i) vibrations "V" correctly labelled OR (NOT) (ii) compression "C" correctly shown anywhere on the spring (iii) wavelength "2" correctly shown of a between poichbouring 	B1 B1	
		(iii) wavelength λ correctly shown: e.g. between heighbouring compressions (generously judged: i.e. somewhere between 28 and 34 mm)	B1	
	(b)	wavelength REDUCES	B1	
		because $v = f\lambda$ AND v remains constant (WTTE)	B1	[5]
160		DIFFDACTION	D1	
100.	(a)	DIFFRACTION	BI D1	
	(0)	(allow "zero phase difference" and "in phase")	ВІ	
	(c)	constructive interference produces bright lines AND destructive for dark lines	B1	
		in phase for bright AND antiphase (allow 'out of phase') for dark (ALLOW diagrams showing crests/troughs meeting crests/troughs for this mark	B1	
		path difference = whole number of wavelengths {allow $n\lambda$ } for bright (ALLOW path difference = λ but NOT path difference = ZERO)	B1	
		path difference = odd number of half wavelengths {allow $(n + 1/2) \lambda$ } for dark (ALLOW path difference = $\frac{1}{2}\lambda$)	B1	
	(d)	recall of $\lambda = ax/D$ (in any valid form)	C1	
		valid substitution: e.g. × = $(6.5 \times 10^{-7} \times 1.5)/0.25 \times 10^{-3}$	C1	
		$x = 3.9 \times 10^{-5} m$ (3.9 × 10 ⁻⁶ scores 2 marks)	A1	
		(5.5 × 16 Secres 2 marks)		[9]
161.	(i)	node: point of ZERO amplitude/displacement/movement/disruption etc.	B1	
	(ii)	antinode: a point of MAXIMUM <u>AMPLITUDE</u>	B1	[2]

158. any two valid points: e.g

}
}
}

[2]

162.	(i)	node N labelled at the bottom AND antinode A labelled at the top	M1
		evidence of 'fundamental' i.e only <u>one</u> A at top and <u>one</u> N at bottom {allow ecf from (a) i.e. if A and N are defined oppositely}	A1
	(ii)	(length of air column = $\frac{1}{4}\lambda$) $\Rightarrow \lambda = 4 \times 0.32 = 1.28$ m {NO ecf from incorrect wave in (i)}	B1
	(iii)	recall of $v = f \lambda$ OR frequency of tuning fork = frequency of standing wave valid substitution: e.g. $f = 330/1.28$	C1
		f = 258 Hz	A1
		{allow ecf from(ii) e.g if $\lambda = 0.32$ is used f = 1030Hz scores 3 marks}	

163. (a) (i) energy = $30 + 10 \times 50 = 530$ keV (1)

(ii)
$$\frac{1}{2} m v^2 = V e (1)$$

 $\frac{1}{2} \times 1.67 \times 10^{-27} v^2 = 530 \times 10^3 \times 1.6 \times 10^{-19} (1)$
 $v = 1.01 \times 10^7 \text{ m s}^{-1} \text{ allow } 1.0 \text{ or } 1 \times 10^7 \text{ m s}^{-1} (1)$ 3

omits 10^3 and gets $3.2 \times 10^5 2/3$ omits 1.6×10^{-19} and gets $2.5 \times 10^{16} 1/3$ omits 1.67×10^{-27} and gets $4.1 \times 10^{-7} 1/3$ ecf from (i): 500 keV to give 9.8×10^6 300 keV to give 7.6×10^6 40 keV to give 2.8×10^6 all can get 3/3

(b) rest energy + kinetic energy =
$$2 h f'(2)$$

omits rest energy or ke 1/2
 $2 \times (9.11 \times 10^{-31}) (3 \times 10^8)^2 + 650 \times 10^3 \times 1.6 \times 10^{-19} = 2 \times 6.63 \times 10^{-34} f(1)$
 $(1.64 \times 10^{-13} + 1.04 \times 10^{-13} = 13.3 \times 10^{-34} f) (1)$
 $f = 2.02 \times 10^{20}$ Hz
omits rest energy and gets 7.82×10^{19} Hz 2/4
omits kinetic energy and gets 1.23×10^{20} Hz 2/4
any further error (-1) each, to zero

[8]

[6]

1

164. X-rays have a very small wavelength (compared with 0.1 mm) (1)
angle of diffraction increases as size of opening decreases (1)
little diffraction when size of opening is much greater than the wavelength (1)
quantitative values - e.g. gap is 10^6 wavelengths (1)
MAXIMUM 33

[3]

165.	sound waves are longitudinal waves (1)
	longitudinal waves cannot be polarised (1)

[2]

2

166.	(a)	 a) (a lower resistance will) take a larger current from the supply (1) (power = V × I) so power to/ brightness of headlamps is greater (1) b) (first position) has no lights on at all (1) (second position just) lights the sidelights (1) (third position turns off the sidelights and) just illuminates the headlamps (1) c) 4 V across the internal resistance of the generator (1) so current = 4 V / 0.50 Ω = 8.0 A (1) 		
	(b)			
	(c)			
	(d)	(i)	12 V across headlamp (1) so current = $12 \text{ V} / 4.0 \Omega = 3.0 \text{ A}$ (1)	2
(ii)		(ii)	power = $V \times I$, total current = 6.0 A (1) power supplied = 12 V × 6.0 A = 72 (1) watt (1)	3
	(e)	8 A from generator but only 6 A to headlamps (1) therefore current to battery is 2 A (allow -2 A) (1) battery is being charged (1)		3
	(f)	(i)	constant voltage maintained across bulbs (and other components) (1) so brightness of bulbs does not vary (when other components are being used (1) less energy wastage (1) can give high current (for starter motor) (1) MAXIMUM 2	2
		(ii)	If the emf of the generator is (equal to or) less than the emf of the battery it is impossible to have it supply more current than the circuit uses (1) Charging the battery is then impossible (1) battery would become discharged (1) or other valid response (1) MAXIMUM 2	2

[19]

167.	(a)	Flow (Allo	w current = rate of flow of charge / current = rate of charge of charge) B1	
	(b)	The c (Allo	charge (flowing past a point) in 1 s when current is 1 A B1 $DW 1C = 1A \times 1s$	
	(c)	(i)	$I = \frac{\Delta Q}{\Delta t} / I = \frac{340}{50} $ (Allow any subject - with or without Δ) C1 6.8 (A) A1	
		(ii)	 There is <u>magnetic</u> field (around the current-carrying strip(s) and hence a force) AW (Fleming's) left-hand rule Towards A / To the left (Allow direction given on diag.) B1 	[7]

168.	current \propto voltage / p.d. (for a metal conductor) [Allow $I \propto V$]			
	as long as temperature remains	constant / all physical conditions remain the same	A1	
	(V = IR and R = constant)	scores 1/2)		
	(V = IR)	scores 0/2)		

169. (i) (Semiconductor) diode

B1

[2]
	(ii)	Any <u>five</u> from: Resistance is given by $R = V/I$ (Allow the use of <i>R</i> for resistance in this question) The resistance is not constant / Diode is a non-ohmic (component) For <u>negative</u> value(s) (of <i>V</i>) resistance is infinite / (very) large (Allow a calculation) For <i>V</i> / value(s) less than 0.6 (V) the resistance is infinite / (very) large (Accept 0.62 V) For <i>V</i> / value(s) greater than 0.6 (V) the resistance is small / less For <i>V</i> / value(s) greater than 0.6 (V) the resistance decreases (as <i>V</i> increases) (Also scores mark above) Resistance correctly calculated at one point (Assume values are in ohms if unit is not given) Resistance correctly calculated at another point (Allow 'voltage increases the resistance decreases' if there is	B1 × 5	
		no reference to 0.6 V and the second mark above is not scored) QWC 'Spelling and grammar'	B1	[7]
170.	sum (fron (–1 f (Alg	of current(s) into a point / junction = sum of current(s) out a the point / junction) for omission of 'point' or 'sum' in the statement of the law) ebraic sum of current(s) at a point = 0 scores 2/2)	B2	[2]
171.	(i)	Thermistor	B1	
	(ii)	$I_1 = 51 \text{ (mA)}$ $I_2 = 9 \text{ (mA)}$ $I_3 = 29 \text{ (mA)}$	B1 B1 B1	[4]
172.	(a)	$R = R_1 + R_2 / R = 200 + 120 / R = 320$ current = $\frac{8.0}{320}$ current = 2.5 × 10 ⁻² (A)	C1 C1 A0	

(c)	p.d. across the 360 (Ω) resistor = p.d. across the 120 (Ω) resistor / There is no current between A and B / in the voltmeter (Allow ' <i>A</i> & <i>B</i> have same voltage' - BOD)				
	The p.d. calculated across 360 Ω resistor is shown to be 3.0 V / The ratio of the resistances of the resistors is shown to be the same.	B1			

173. (a) (i) length =
$$2\pi \times 2.8 \times 10^{-2} \times 20$$
 / length = $2\pi \times 2.8 \times 20$ M1
length = 3.52 (m) ≈ 3.5 (m) / length ≈ 350 (cm) A0

(ii)
$$R = \frac{\rho L}{A}$$
 (Allow any subject) C1

$$R = \frac{4.9 \times 10^{-7} \times 3.5}{8.4 \times 10^{-7}}$$
C1

$$R = 2.04 \approx 2.0 \ (\Omega) \quad (R = 2.05 \approx 2.1 \ \Omega \text{ if } 3.52 \text{ m is used})$$
 A1

(b) (i)
$$V = 6.0 \times 2.04$$
 (Possible ecf) (Allow initial current 5.7 A to 6.0 A) C1
 $V = 12.2 \approx 12$ (V) (Allow $V = 2.0 \times 2.04 \approx 4.1$ (V) 1 mark) A1

(ii)
$$P = VI$$
 (Allow $P = I^2 R$ or $P = V^2/R$) C1
 $P = 12 \times 6.0$ (Possible ecf)
 $P = 72$ A1

watt / W / J s^{$$-1$$} / VA B1

(iii)	Any <u>four</u> from:	B1 × 4	
	The temperature of the coil increases / the coil gets 'hotter'		
	(Allow 'coil heats up')		
	The resistance / resistivity of coil increases (as its temperature		
	increases)		
	The decrease in current is linked to $I = V/R$		
	More / frequent collisions of electrons and (vibrating) atoms /		
	ions (as temperature / resistance increases)		
	The coil (eventually) reaches steady temperature / constant		
	(higher) resistance		
	OWC 'Organisation'	B1	
			[14]

174. particle(-like) / particulate (nature) / photon ('behaviour')

175. (i) A 'packet' of energy / radiation / A quantum of (EM) radiation / energy / light B1

[1]

B1

[5]

(Do <u>not</u> allow '*particle of light*')

(ii) The <u>minimum</u> frequency (of the EM radiation) for emission of electrons / photoelectric effect B1

[2]

B1

176. (i) Visible (light)

(ii) work function =
$$1.9 \times 1.6 \times 10^{-19}$$
 M1
work function = 3.04×10^{-19} (J) $\approx 3.0 \times 10^{-19}$ (J) A0

(iii) 1.
$$E = hf / E = \frac{hc}{\lambda}$$
 C1
 $E = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^8}{5.1 \times 10^{-7}}$
 $E = 3.9 \times 10^{-19}$ (J) A1

2.
$$hf = \phi + KE_{(max)} / hf = \phi + \frac{1}{2} mv^2$$

(Allow $E = \phi + \frac{1}{2} mv^2$ if E is qualified in (iii)**1.**) C1
 $3.9 \times 10^{-19} = 3.0 \times 10^{-19} + KE_{(max)} / 3.9 \times 10^{-19} = 3.04 \times 10^{-19} + KE_{(max)}$ C1
 $KE = 9.0 \times 10^{-20}$ (J) / KE = 8.6×10^{-20} (J) (Possible ecf) A1

(v) number of photons =
$$\frac{80 \times 10^{-3}}{3.9 \times 10^{-19}}$$
 ($\approx 2.05 \times 10^{17}$) (Possible ecf) C1

number of electrons =
$$0.07 \times \frac{80 \times 10^{-3}}{3.9 \times 10^{-19}}$$

number of electrons = $1.44 \times 10^{16} (s^{-1}) \approx 1.4 \times 10^{16} (s^{-1})$ A1 [11]

Ambrose College

177.	$\lambda = -\frac{1}{n}$	$\frac{h}{nv}$ (Allow any subject) C1	
	5.1×	$10^{-7} = \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times v} $ C1	
	<i>v</i> = 1.	$43 \times 10^3 \approx 1.4 \times 10^3 (\text{ms}^{-1})$ A1	[3]
178.	(i)	any 3 from reflection, TIR, refraction, diffraction, interference B1+B1+B1 {also allow energy transfer, superposition, creation of standing waves but do not allow $v = f\lambda$, progressive waves}	
	(ii)	polarisation B1	[4]
179.	(a)	 (i) frequency = number of vibrations/waves/oscillations/cycles per sec B1 {reject f = 1/period unless period defined} 	
		 (ii) wavelength = distance between neighbouring corresponding pts {Allow "crest to crest" "trough to trough" or labelled diagram or length of 1 cycle of the wave} 	
	(b)	in one second f waves are produced each of length λ B1distance travelled in one second is therefore $f\lambda$ OR (hence) $v = f\lambda$ B1OR speed = dist/time = λ/T B1and T = 1/f hence v= $f\lambda$ B1{reject consistency of units approach}	[4]
180.	(i) (ii)	period = $1/500 = 0.002s$ (or 2ms) at least 2 full (sine) waves of constant period (+/- 2mm) B1	
	(11)	of amplitude 3 cm (+/- 2mm in both directions)B1correct 'period' of 4 cm (+/- 2mm throughout)B1	
	(iii)	correct substitution into $v = f\lambda$: e.g. $330 = 500\lambda$ C1 $\lambda = 0.66$ m {do not allow 0.6 but allow 0.7}A1	[6]

181.	simil wave diffe	arity: any valid point e.g. (both have) vibrations, frequency, amplitude, elength, period, displacement (not velocity) rence:	B1	
	e.g. r neigh only {allo	to energy transfer for standing waves } bouring points vibrate in phase for standing waves } standing waves have nodes and antinodes } w standing waves are "trapped"/fixed/confined/don't move forward}	B1	[2]
182.	(i)	arrows show vertical oscillations maximum amplitude at top {allow ecf for horiz.} less in middle AND very small (or zero) at base {allow 1 mark only for unlabelled diagram showing representation of amplitude} {2 marks for unlabelled diagram plus an arrow} {allow single headed arrows}	B1 B1 B1	
	(ii)	wavelength = $4 \times 0.36 = 1.44$ m	B1	
	(iii)	recall of $v = f \lambda$ f = v/ λ = 330/1.44 (allow ecf) = 229 (or 230) Hz	B1 B1	
	(iv)	if open at both ends each end must be an antinode OR diagram hence wavelength = 0.72m {allow ecf} and frequency = 458 (or 460) Hz {allow ecf}	B1 C1 A1	[9]
183.	(i)	a progressive wave transfers energy (WTTE) {allow "wave profile moves through space" OR crest/troughs move along the medium} {allow "waves that move from one place to another" but not "waves move"}	B1	
	(ii)	longitudinal: vibrations/motions PARALLEL (to wave direction) {allow back and forth}	B1	
		transverse: vibrations/motions PERPENDICULAR (to wave direction)	B1	[3]
184.	10^{-3}	to 10^{-1} (m) (Allow range: 0.0005 m to 0.15 m)	B1	

[1]

185. Any <u>one</u> from:

	1. 2. 3. 4. 5. 6.	Travel Travel Transv Consis Can be (Behay	Is at the speed of li I in vacuum (Allow verse (wave) / can I sts of oscillating el e reflected / refract ve as) photon(s)	ght / 3×10^8 (ms ⁻¹ in / 'free space' but not be polarised ectric and magnetic red / diffracted / show	n vacuum) t just 'space') fields ws interference		B1	
	7.	Warm	s food					[1]
186.	(e.m.: (e.m.:	f. =) $\frac{W}{Q}$ f. =) 3.2	$\frac{7}{2} / (e.m.f. =) \frac{78}{24}$ 25 ≈ 3.3 (V)				C1 A1	[2]
187.	(a)	<u>Energy</u>	y (transformed by a	a device working) at	1 kW for 1 hou	ır	B1	
	(b)	E = Pt (time =	$t / 5.8 = 0.12 \times time$ =) 1.74 × 10 ⁵ ≈ 1.7	e / (time =) 48.3 (hr) $f \times 10^5 (s)$			C1 A1	[3]
188.	(a)	Line c V = E	The prosses 'y-axis' at $1 - Ir$; since $I = 0$ (H	4 (V) / $V = E$ or 1.4 lence $V = E$ or 1.4(V	I(V) when $I = 0$		B1	
	(b)	(i)	(Graph extrapolate (Allow tolerance ±	ed to give) current = = 0.1A)	2.0 (A)		B1	
		(ii)	$E = I_{(\max)} r$	gradient = r (Ignore	e sign)		C1	
			$(r = \frac{1}{2.0})$ $r = 0.7(0) (\Omega)$	(Attempt made to f $r = 0.7(0) (\Omega)$	(Possible ect	f)	A1	
		(iii)	(excessive) heating cell might 'explod	g of <u>cell</u> / energy wa e' / <u>cell</u> goes 'flat' (o	sted <u>internally</u> / quickly)		B1	[5]

189. Correct circuit for both lamps in parallel (ignore ammeter here)

B1

B1

B1 B1 B1

The resistance of LDR/circuit changes (as light intensity changes)
When blade blocks light, resistance of LDR/circuit is large(r) (ora)
Correct statement about p.d (Possible ecf)

(ii) 1.
$$(V = 5.0 - 3.0)$$

2.0 (V) (Allow 1 sf answer) B1

2.
$$V = \frac{R_2}{R_1 + R_2} \times V_0$$
 $I = 2.0/2200 / 9.1 \times 10^{-4} (A)$ C1

$$(3.0 = \frac{R}{R + 2200} \times 5.0) \quad (R = 3.0 / 9.1 \times 10^{-4})$$

$$R = 3300 \; (\Omega) \qquad R = 3300 \; (\Omega) \qquad \text{Possible ecf} \qquad A1$$

(For $V_{\text{LDR}} = 2.0 \text{ V}, R = 1.47 \text{ k}\Omega$. This scores 1/2)

(If 3.5 V given in (ii)1., then
$$R = 940 \Omega$$
. This scores 2/2)

[6]

[2]

191. (resistance =) p.d./current (Allow use of 'voltage')B2((resistance =) ratio of p.d. to current 2/2)((resistance =) voltage per (unit) current 2/2)<math>((R =) V/I scores 1/2)((resistance =) voltage per (unit) ampere scores 1/2)

192. (i) Parallel

B1

(ii) **1.**
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots / = \frac{1}{R} = \frac{3}{8}$$
 C1

$$(R =) 6.0 (\Omega)$$
 (Allow 1 sf answer) A1

2.
$$P = \frac{V^2}{R}$$
 (Allow $P = VI$ or $P = I^2 R$) C1

$$(P = \frac{12^2}{6})$$

$$P = 24 \text{ (W)} \quad (\text{Possible ecf from (ii)1.}) \quad A1$$

$$(\text{If 18 } \Omega \text{ used}, P = 8 \text{ (W). Allow 1/2})$$

3.
$$R = \frac{\rho L}{A}$$
 (Allow other subject) C1

$$18 = \frac{6.9 \times 10^{-6} \times 0.85}{A}$$
 C1

$$A = 3.26 \times 10^{-7} \approx 3.3 \times 10^{-7} (m^2)$$
 A1
(3.3 × 10⁻⁵ (m²) scores 2/3)

(If
$$R = 6.0 \Omega$$
 then $A = 9.8 \times 10^{-7}$ (m²). This scores 2/3)

193. (a) Into the page B1

(b)
$$I = \frac{\Delta Q}{\Delta t}$$
 (Allow other subject, with or without Δ) C1
(charge =) 7800 × 0.23 C1
 $1.794 \times 10^3 \approx 1.8 \times 10^3$ (C) (Ignore minus sign) A1
(1.8×10^6 (C) scores 2/3)

(c) (number =)
$$\frac{1.79 \times 10^3}{e}$$
 (Possible ecf) C1
(number =) $1.12 \times 10^{22} \approx 1.1 \times 10^{22}$ A1

[6]

[8]

194.	(a)	Any <u>f</u>	five from:	$B1 \times 5$	
		1.	Photoelectric (effect) mentioned		
		2.	Photon(s) mentioned in correct context / $E = hf$		
		3.	One-to-one 'interaction' between photon & electron		
		4.	Surface electrons are involved		
		5.	Electron released / photoelectric (effect) when photon energy > / = work function (energy)		
		6.	Electrons emitted / photoelectric (effect) when frequency > / = threshold frequency		
		7.	Energy is conserved (in the 'interaction' between photon and electron	1)	
		8.	Reference to Einstein's equation: $hf = \phi + KE_{(max)}$		
		[QW0	C: Spelling and Grammar]		
	(b)	(i)	1. (energy of photon = 2.2 + 0.3) 2.5 (eV)	B1 B1	
			2. (energy =) $2.5 \times 1.6 \times 10^{-19}$ (Possible ecf from (b)(i)1.)	C1	
			4.0×10^{-19} (J) (Allow 1 sf answer)	A1	
		(ii)	$(f=) \frac{4.0 \times 10^{-19}}{h} $ (Possible ecf) $(f=\frac{4.0 \times 10^{-19}}{6.63 \times 10^{-34}})$	C1	
			$(f=) 6.03 \times 10^{14} \approx 6.0 \times 10^{14} (\text{Hz}) (\text{Allow } 6 \times 10^{14})$	A1	
	(c)	Each	photon has more energy / There are fewer photons (in	B1	
		a give Small	ler current	B1	[13]
195.	sprea {NB	nding (c ignore	out of waves as they pass through an opening or an edge) bending/changes direction/deviates/disperses}	B1	[1]
196.	(i)	(circu	ılar) arcs drawn after gap: i.e. reject any flatness	B1	

	(ii)	wave	es must have plane central section {ignore curved edges}	B1	
		evide {judg	ence that wavelength stays constant shown in <u>either</u> diagram ged by eye unless λ is labelled before and after gap}	B1	
		Gap judge	widths look about right w.r.t. λ i.e. ×2 and ×10 - generously ed by eye, looking at (i) first then comparing gap size with (ii).	B1	[4]
197.	Wav	elengtl	h of light is very short	B1	
_,	most	gaps a	are very large in comparison to wavelength OR small gaps		
	are n	eeded	(to observe diffraction) (AW)	B1	[2]
198.	(a)	(i)	amplitude = 1.2 (mm)	B1	
		(ii)	period = 2.4 (ms) {allow 2.4×10^{-3} ms if 2.4×10^{-3} is correctly used in substitution in (b)(i)}	B1	
	(b)	(i)	frequency = 1/period 1/0.0024 = 417Hz (OR 420) {1/2.4 = 0.417 OR 0.42 OR 0.4 scores 1 mark} {allow ecf from cand's period value}	C1 A1	
		(ii)	recall of v = f λ OR c = f λ OR λ = vT OR 1500 = 417 λ λ = 3.6 m {ecf for cand's f: e.g. λ = 1500/0.417 = 3600 m scores 2 marks OR λ = 1500/0.4 = 3750 m scores 2 marks} λ = 1500/0.42 = 3571 m scores 2 marks	C1 A1	
		(iii)	valid scale for cand's λ shown on position axis AND at least two full 'sine' waves drawn (waves can be very rough but not square waves }	B1	
			amp. shown as 1.2 mm +/- $\frac{1}{2}$ sq.: check first peak + trough only	B1	
			first wavelength correct as 3.6 m +/- 1 sq. {allow ecf from (b)(ii)}	B1	
	{NB	If ther	re is no scale on the position axis the 1 st and 3 rd marks cannot be scored}		[9]

199.	(a)	• OR <i>OR</i>	Reference to incident & reflected waves or formation of astanding wave :e.g. detector receives waves directly from Tand (by reflection) from Preflected wave interferes with outgoing wave (AW)a" standing wave" OR "nodes AND antinodes" formed	B1	
		OR	waves interfere constructively for maxima OR destructively for minima} nodes formed where intensity is minimum OR antinodes at maxima}	B1	
		•	<u>Measure</u> distance between maxima/minima OR <i>between</i> <i>nodes/antinodes</i> evidence of max to max/min to min/node to node/antinode	B1	
			to antinode = $1/2\lambda$	B1	
		•	Use $v = f\lambda$ to find f	B1	
			evidence that v is known to be speed of light $/c/3 \times 10^{\circ}$ m/s	B1	
		{NB trace {NB: score	allow answers referring to CRO: find period from CRO M1; use $f = 1/T - A1$ } : "use $c = f\lambda$ " scores 2 marks "use a (digital) frequency meter" as 1 max}		
	(b)	Place	e (polarising) grid (allow "POLAROID") between T and D	M1	
		AND {allo	w 'rotate transmitter' OR 'rotate detector'}	IVI I	
		signa	l drops to zero if microwaves are plane polarised	A1	
	{NB	: "Rota	te a SINGLE-slit AND signal drops to zero" scores maximum of 1 mark}		[8]
200.	wher the re {do r {NB	n two w esultan not allo allow	vaves meet/overlap/interfere/collide/superpose (AW) t displacement is the sum of the displacements ow amplitude} 2 marks for good diagrams}	B1 B1	
					[2]
201.	(i)	wave	sources with constant phase difference	B1	
	{NB	allow	"in phase" and ignore reference to frequency/wavelength/amplitude}		
	(ii)	S ₁ an	d S ₂ 'share the same light' (AW)	B1	
		refere OR to	ence to diffraction at the <u>single</u> slit o wavefronts e.g. "same wavefront reaches S_1 and S_2 (AW)	B1	
	(iii)	Cons path	tructive interference occurs at O difference is zero OR waves meet in phase (AW)	B1 B1	

(iv) recall of formula $\lambda = ax/D$ in any valid form (e.g. $x = \lambda D/a$)	C1	
{NB allow undefined symbols provided they match the above as stated in the spec., otherwise they must be defined}		
correct sub. with <u>consistent units</u> : $\lambda = 2 \times 10^{-3} \times 0.6 \times 10^{-3} / 1.8$ $\lambda = 6.7 \times 10^{-7} \text{ m}$	C1 A1	
{NB allow ecf if mm used: i.e 2 marks for 6.7×10^{-1} OR 6.7×10^{-4} }		
(v) 'fringe separation' (AW) would DECREASE	B1	
{NB allow "more fringes would be seen"}		
because $x \propto \lambda$ (AW)	B1	
{NB allow 'colour change' arguments for full marks:		
Colour would change B1; to a colour closer to the blue end of visible spectrum (AW) B1}		[10]