1.	(i)	λ distance between (neighbouring) identical points/points with same phase (on the wave)	
		accept peak/crest to peak/crest, etc.	B1
		f number of waves passing a point /cycles/vibrations (at a point) per unit time/second	
		<i>accept</i> number of waves produced by the wave source per unit time/second	
			B1
		v distance travelled by the wave (energy) per unit time/second	
		not $v = f\lambda$ and not 'in one second'	B1
	(ii)	in 1 second f waves are produced each of one wavelength λ	
		accept time for one λ to pass is $1/f$ so $v = \lambda/(1/f) = f \lambda$	M1
		distance travelled by first wave in one second is $f \lambda = v$	
		give max 1 mark for plausible derivations purely in terms of algebra (no words)	
			A1
2	(i)	it consists of nodes and antipodes / it does not transfer energy (WTTE)	D1

2.	(i)	it consists of nodes and antinodes / it does not transfer energy (WTTE) formed by two identical waves travelling in opposite directions (WTTE)	B1 B1	
		(microwaves leaving transmitter) interfere (with reflected waves) (WTTE) {allow superimpose/interact/cancel out/reinforce for interfere}	B1	
	(ii)	1.wavelength of the microwaves = $2 \times 1.4 = 2.8$ cm	B1	
		2. speed of microwaves in air = 3×108 m/s OR c	M1	
		frequency = $3 \times 108 / 2.8 \times 10 - 2$ (allow ecf) = 1.07×1010 Hz	A1	
	(iii)	Place a metal grid {allow "Polaroid"} (between T and D) and rotate		
		(or place at 900) OR rotate grid/transmitter/detector	B1	
		this causes minm/zero signal (WTTE)	B1	

[5]

[8]

3.	(a)	(i)	amplitude correctly labelled (by A or in words) (reject "A" as a point i.e. with no arrows)	B1
		(ii)	wavelength correctly labelled (by λ or in words)	B1
	(b)	(i)	same shape moved slightly to the right consistently drawn for both waves (do not allow shift of more than ¼ wavelength)	B1 B1
		(ii)	movement is VERTICAL Q moves UP ↑ <u>AND</u> S moves DOWN ↓ shown	M1 A1
	(c) phase difference = 180° (degrees) OR π {allow "in antiphase" do not allow "out of phase"}		B1	
				~ .
	(d)	(i)	recall of $T = 1/f$	C1
			T = 1/25 = 0.04 s	A1
		(ii)	recall of $v = f\lambda$	C1
			valid substitution: e.g. $v = 25 \times .036$	C1
			$v = 0.90 m s^{-1}$	A1
			(there are 2 possible errors – incorrect wavelength and wrong units, so $v = 90$ m/s scores 2 marks $v = 0.45$ m/s scores 2 marks but allow 3 marks for ecf from cand's λ in (a) (ii) $v = 45$ m/s scores 1 mark but allow 2 marks for ecf from cand's λ in (a) (ii)	
	(e)	(i)	any valid suggestion: e.g. change depth of water	B1
		(ii)	wavelength will reduce halved	C1
			{OR new wavelength = 1.8 cm OR half cand's value shown in (d) ii}	A1

[15]

4.	so al all c	all are transverse waves (1) l can be polarised (under suitable conditions) (1) an travel in a vacuum (1) e same speed (1)		
		MAXIMUM 2 for first part	2	
	e.g.	Pussion of other wave phenomena and how they change as wavelength changes diffraction refraction uch things as the sensitivity of the eye to certain wavelengths photographic film for certain wavelengths heating effect, particularly of infra-red radio and its effect on electrons quantum effects – minimal for radio, predominant for gamma		
		4 marks can be given as 2,2 or 2,1,1	4	
	i.e. 2	2 topics dealt with fully or (1) topic dealt with fully and 2 topics outlined		[6]
5.	(i)	infra red is part of the e-m spectrum	B1	
		lower f or longer λ than the visible region/light or suitable value or range of λ		
		accept any single λ in range 10^{-5} m to 7.5×10^{-7} m or any reasonable wider range	B1	
	(ii)	1 $\lambda = c/f = 3.0 \times 10^8/6.7 \times 10^{13}$	C1	
		$4.5 \times 10^{-6} (\mathrm{m})$		
		<i>accept</i> 4.48×10^{-6} or more <i>s.f.</i>	A1	

2
$$T = 1/f = 1/6.7 \times 10^{13}$$
 C1

$$T = 1.5 \times 10^{-14} \text{ (s)}$$

accept 1.49×10^{-14}

	(iii)	at least one cycle of a sine or cosine curve as judged by eye ecf(ii)2 amplitude 8.0×10^{-12} m period = 1.5×10^{-14} s	B1 B1 B1	[9]
6.	(i)	period = 1/500 = 0.002s (or 2ms)	B1	
	(ii)	at least 2 full (sine) waves of constant period (+/- 2mm) of amplitude 3 cm (+/- 2mm in both directions) correct 'period' of 4 cm (+/- 2mm throughout)	B1 B1 B1	
	(iii)	correct substitution into $v = f\lambda$: e.g. $330 = 500\lambda$ $\lambda = 0.66$ m {do not allow 0.6 but allow 0.7}	C1 A1	[6]
7.	(i) {NB	wave sources with constant phase difference allow "in phase" and ignore reference to frequency/wavelength/amplitude}	B1	
	(ii)	S_1 and S_2 'share the same light' (AW)	B1	
		reference to diffraction at the <u>single</u> slit OR to wavefronts e.g. "same wavefront reaches S_1 and S_2 (AW)	B1	
	(iii)	Constructive interference occurs at O path difference is zero OR waves meet in phase (AW)	B1 B1	
	(iv)	recall of formula $\lambda = ax/D$ in any valid form (e.g. $x = \lambda D/a$)	C1	

{NB allow undefined symbols provided they match the above as stated in the spec., otherwise they must be defined}

correct sub. with consistent units:
$$\lambda = 2 \times 10^{-3} \times 0.6 \times 10^{-3} / 1.8$$
 C1
 $\lambda = 6.7 \times 10^{-7} \text{ m}$ A1

{NB allow ecf if mm used: i.e 2 marks for 6.7×10^{-1} OR 6.7×10^{-4} }

	(v)	'fringe separation' (AW) would DECREASE	B1		
	{NB	allow "more fringes would be seen"}			
		because $x \propto \lambda$ (AW)	B1		
	{NB	allow 'colour change' arguments for full marks:			
		Colour would change B1;			
		to a colour closer to the blue end of visible spectrum (AW) B1}		[10]	
				[10]	
8.	(i)	arrows show vertical oscillations	B1		
		maximum amplitude at top {allow ecf for horiz.}	B1		
		less in middle AND very small (or zero) at base {allow 1 mark only for unlabelled diagram showing representation of	B1		
		amplitude}			
		{2 marks for unlabelled diagram plus an arrow}			
		{allow single headed arrows}			
	(ii)	wavelength = $4 \times 0.36 = 1.44$ m	B1		
	(iii)	recall of $v = f \lambda$	B1		
		$f = v/\lambda = 330/1.44$ (allow ecf) = 229 (or 230) Hz	B1		
	(iv)	if open at both ends each end must be an antinode OR diagram	B1		
		hence wavelength = $0.72m$ {allow ecf}	C1		
		and frequency = 458 (or 460) Hz {allow ecf}	A1	[9]	
9.		n two waves meet/overlap/interfere/collide/superpose (AW)	B1		
	the resultant displacement is the sum of the displacements B1 {do not allow amplitude}				
		allow 2 marks for good diagrams}		[2]	