1. (a) resistors in series add to 20Ω and current is 0.60 A
accept potential divider stated or formula
so p.d. across XY is $0.60 \times 12(=7.2 \mathrm{~V})$
gives $(12 / 20) \times 12 \mathrm{~V}(=7.2) \mathrm{V}$
B1
(b) (i) the resistance of the LDR decreases
(so total resistance in circuit decreases) and current increases
(ii) resistance of $\underline{L D R}$ and 12Ω (in parallel)/across XY decreases so has smaller share of supply p.d. (and p.d. across XY falls)
alternative I increases so p.d. across 8.0Ω increases; so p.d. across XY falls
2. (a) (i) $I=V / R=8.0 / 200$ $\mathrm{I}=0.040(\mathrm{~A})$
(ii) $\mathrm{V}=24-8=16(\mathrm{~V})$
(iii) $\mathrm{R}=16 / 0.04$ giving
$\mathrm{R}=400(\Omega)$
accept ratio of p.d.s to ratio of $R s$
ecffrom (i) \& (ii) ie (a)(ii)/(a)(i)
(iv) $\quad \begin{aligned} \mathrm{P} & =\mathrm{VI}=\mathrm{I}^{2} \mathrm{R}=\mathrm{V}^{2} / \mathrm{R} \\ \mathrm{P} & =0.640(\mathrm{~W})\end{aligned}$ $\mathrm{P}=0.640(\mathrm{~W})$
ecffrom (i) \& (ii)
accept 640 mW
(b) (i) the thermistor has heated up/ its temperature has increased so its resistance has dropped so the ratio of the voltages across the potential divider changes/AW

> accept so the current increases
> accept so IR of fixed resistor increases
(ii) voltages are equal so resistances are equal
(c) (i) straight line through origin labelled R passing through $0.06,12$
allow correct lines with no labels
(ii) upward curve below straight line through origin labelled T passing through $0.06,12$
3. Any four from:
B1 $\times 4$

1. (As temperature increases) the resistance of the thermistor / T decreases
2. The total resistance decreases (Possible ecf)
3. The current increases (in the circuit) (Possible ecf)
4. The (voltmeter) reading increases / voltage across \mathbf{R} increases (Possible ecf)
5. The voltage across the thermistor / T decreases (Possible ecf)
6. Correct use of the potential divider equation / comment on the 'sharing' of voltage / correct use of $V=I R$
7. (a) $E=I(R+r)$
(b) (i) $1 \quad 0.80 \Omega$
$2 \quad 6.4 \mathrm{~V}$
(ii) (sum of) e.m.f.s = sum /total of p.d.s/sum of voltages (in a loop)
(iii) $\quad 6.4=0.80 \mathrm{I}$
$\mathrm{I}=8.0 \mathrm{~A}$
can be 2 ecf from (b)(i), eg 21.6/0.8
$=27 \mathrm{~A}(1 \mathrm{ecf})$ or $21.8 / 0.68=31.8 \mathrm{~A}(2 \mathrm{ecf})$
(c) (i) $\mathrm{Q}=\mathrm{It}=2.5 \times 6 \times 60 \times 60$

$$
=54000(\mathrm{C})
$$

allow 1 mark ifforgets one or two 60 's giving 900 C or 15 C
(ii) energy $=\mathrm{QE}=54000 \times 14$

$$
=756000(\mathrm{~J})
$$

allow (use of 12 V gives) 648000 J for 1 mark
(iii) energy loss $=\mathrm{I} 2 \mathrm{Rt}=\mathrm{VIt}=2 \times 2.5 \times 6.0 \times 60 \times 60=108000 \mathrm{~J}$ percentage $=(108000 / 756000) \times 100=14 \%$
accept $Q \Delta V=54000 \times 2.0=108000 \mathrm{~J}$ accept $Q \Delta V / Q E=2.0 / 14.0=14 \%$ not $756000 / 54000=14 \%$
5. (a) resistance $=$ p.d./current
accept voltage instead of p.d.; ratio of voltage to current; voltage per (unit) current not $R=V / I$ or p.d. $=$ current x resistance or p.d. per amp or answer in units or voltage over current
(b) (i) 6 V
(ii) $\mathrm{R}=\mathrm{V} / \mathrm{I}=6 / 0.25$

$$
=24(\Omega)
$$

ecf(b)(i) 240 V gives 960Ω award $0.024 \Omega 1$ mark only (POT error)
(c) (i) 6 V supply with potential divider 'input' across it and lamp across p.d. 'output' ammeter in series with lamp voltmeter across lamp

> accept $0-6$ variable supply with lamp
> across it
> not variable R in series with supply circuit with no battery present can only score voltmeter mark
(ii) non-zero intercept
line indicating increasing value of R with current
curve must reach y-axis
accept straight line or upward curve
(iii) resistivity/resistance of filament wire increases with temperature the temperature of the lamp increases with current/voltage increase more frequent electron-ion/atom collisions/AW increased ion vibrations
accept any two of the four statements
accept $A W$, e.g the lamp heats up because
of the current
(d) (i) lamps do not light
ignore reasons unless too contrary
remaining lamps are lit with qualification
qualification could be more dimly or sensible explanation
(ii) using resistors in parallel formula to obtain a value of R per unit R per unit $=19.4 \Omega$ or R total $=774 \Omega$ $\mathrm{I}=6 / 19.4$ or $240 / 774=0.31 \mathrm{~A}$
eg takes R of bulb $=10 \Omega$ giving R per unit $=9.1 \Omega$ gains first mark only
ecf (b)(i)(ii)
accept R of resistors $=4000 \Omega$; current in chain $=0.06 \mathrm{~A}$; total current $=0.06+0.25=0.31 \mathrm{~A}$
0.3 A is SF error so gains 2 marks only
apply S F error only once in paper
6. (Sum of) e.m.f.s = sum /total of p.d.s/sum of voltages (in a loop) B1
$\begin{array}{ll}\text { energy is conserved } & \text { B1 }\end{array}$
7. (a) (Semiconductor) diode

B1
(b) The diode symbol circled (No ecf allowed) B1
(c) $\quad R=\frac{V}{I}$

At $0.20 \mathrm{~V}, \mathrm{R}=$ infinite $/$ very large
At $0.70 \mathrm{~V}, R=\left(\frac{0.70}{0.020}=\right) 35(\Omega) \quad$ (Allow answers in the range:

$$
\{31.82 \text { to } 38.89\})
$$

(d) p.d across diode $=0.75(\mathrm{~V}) \quad /\left(R_{\mathrm{t}}=\frac{4.5}{0.060}=\right) 75(\Omega)$
p.d across resistor $=4.5-0.75=3.75(\mathrm{~V}) \quad / \quad\left(R_{\mathrm{d}}=\frac{0.75}{0.060}=\right) 12.5(\Omega)$
$R=\left(\frac{3.75}{0.060}=62.5 \approx\right) 63(\Omega)$
/ $R=(75-12.5=62.5 \approx) 63(\Omega)$
(Use of 0.70 V across the diode gives $R=63.3 \Omega$ - This can score $2 / 3$)
$\begin{array}{lll}\text { (e) Straight line through the origin } & \text { M1 } \\ \text { Line of correct gradient (with line passing through } 0.63 \mathrm{~V}, 0.01 \mathrm{~A}) & \text { A1 } \\ \text { [Possible ecf }]\end{array}$

